当前位置:主页 > 科技论文 > 基因论文 >

水稻矮化少分蘖基因D26的图位克隆及功能研究

发布时间:2021-02-13 23:19
  作为重要的粮食作物,水稻从传统的经验育种向现代精准育种转变的过程中,株型是影响水稻产量最为重要因素之一,它取决于植株高度、分蘖数目、分蘖角度、穗形态等因素。对于水稻株型的机制研究,是短期内难以突破的科学问题和技术难题,其中矮化突变体是非常理想的研究对象,但是调控机制知之甚少。本文在前期研究的工作基础上,对水稻矮化、少分蘖D26突变体进行系统研究,揭示它参与水稻油菜素内酯激素调控的信号通路机制。本文从水稻突变体库中组织培养变异获得了2个农艺性状表现矮化、少分蘖的突变材料D26-1和D26-2,通过图位克隆实现精细定位和进一步的功能分析,揭示了D26突变体矮化表型的遗传机理,并从互作蛋白筛选和转录组测序分析角度,进一步挖掘水稻矮化机制。主要结果如下:D26突变体一个隐性单基因控制表型。利用D26突变体做母本和93-11亲本做父本,构建杂交F2群体,通过425个群体和531个群体将其分别定位在3号染色体短臂上63 kb区间,该区间内包含12个候选基因;分析预测和克隆、测序表明D26基因是一个编码GRAS家族蛋白的转录因子,两个突变体在D26基因540 bp和560 bp... 

【文章来源】:华侨大学福建省

【文章页数】:143 页

【学位级别】:博士

【部分图文】:

水稻矮化少分蘖基因D26的图位克隆及功能研究


水稻油菜素内酯相关基因研究网络(Tong,2018)

载体,质粒,片段,基因


D26基因分别从水稻籼稻明恢86和D26突变体的c DNA中扩增获得全长,片段回收与pMD18-T连接、测序比对分析。互补实验载体构建:一个含有D26基因启动子、c DNA全长和3"UTR非编码区3563 bp全长片段从中间载体p UPGWPR上由HindIII/Eco RV酶切,与Bam HI酶切p CAMBIA1300载体分别回收,两片段经平端连接,最终构建互补载体p CAMBIAGWP26(见图1)。2.2.8 植物叶片总RNA提取-TRIzol法

流程图,流程,测序,信息分析


转录组测序流程

【参考文献】:
期刊论文
[1]Brassinosteroid-regulated plant growth and development and gene expression in soybean[J]. Wenchao Yin,Nana Dong,Mei Niu,Xiaoxing Zhang,Lulu Li,Jun Liu,Bin Liu,Hongning Tong.  The Crop Journal. 2019(03)
[2]OsIDD2, a zinc finger and INDETERMINATE DOMAIN protein, regulates secondary cell wall formation[J]. Peng Huang,Hideki Yoshida,Kenji Yano,Shunsuke Kinoshita,Kyosuke Kawai,Eriko Koketsu,Masako Hattori,Sayaka Takehara,Ji Huang,Ko Hirano,Reynante Lacsamana Ordonio,Makoto Matsuoka,Miyako Ueguchi-Tanaka.  Journal of Integrative Plant Biology. 2018(02)
[3]A zinc finger protein, interacted with cyclophilin,affects root development via IAA pathway in rice[J]. Peng Cui,Hongbo Liu,Songlin Ruan,Basharat Ali,Rafaqat Ali Gill,Huasheng Ma,Zhifu Zheng,Weijun Zhou.  Journal of Integrative Plant Biology. 2017(07)
[4]OsGRF4 controls grain shape, panicle length and seed shattering in rice[J]. Pingyong Sun,Wuhan Zhang,Yihua Wang,Qiang He,Fu Shu,Hai Liu,Jie Wang,Jianmin Wang,Longping Yuan,Huafeng Deng.  Journal of Integrative Plant Biology. 2016(10)
[5]Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice[J]. Rongfang Xu,Yachun Yang,Ruiying Qin,Hao Li,Chunhong Qiu,Li Li,Pengcheng Wei,Jianbo Yang.  Journal of Genetics and Genomics. 2016(08)
[6]TALEN-Mediated Homologous Recombination Produces Site-Directed DNA Base Change and Herbicide-Resistant Rice[J]. Ting Li,Bo Liu,Chih Ying Chen,Bing Yang.  Journal of Genetics and Genomics. 2016(05)
[7]水稻小粒基因SG4(D11等位基因)的克隆和功能研究(英文)[J]. 石珍源,饶玉春,徐杰,胡时开,方云霞,余海萍,潘江杰,刘瑞芳,任德勇,王小虎,祝阳舟,朱丽,董国军,张光恒,曾大力,郭龙彪,胡江,钱前.  Science Bulletin. 2015(10)
[8]GS6, A Member of the GRAS Gene Family,Negatively Regulates Grain Size in Rice[J]. Lianjun Sun,Xiaojiao Li,Yongcai Fu,Zuofeng Zhu,Lubin Tan,Fengxia Liu,Xianyou Sun,Xuewen Sun,Chuanqing Sun.  Journal of Integrative Plant Biology. 2013(10)
[9]Toward understanding genetic mechanisms of complex traits in rice[J]. Wei Hao, Hong-Xuan Lin* National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.  遗传学报. 2010(10)



本文编号:3032729

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiyingongcheng/3032729.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3ffac***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com