水稻类黄酮代谢相关糖基转移酶关键基因的鉴定与功能研究
发布时间:2021-05-11 03:34
植物中存在各种各样的修饰化反应,能够产生大量结构多样性的代谢物,这些反应通常能够改变这些代谢物前体的生物学功能。糖基转移酶介导的糖基化反应是引起次生代谢物多样性的主要反应之一。类黄酮是一类广泛存在于植物体内的次生代谢产物,在植物的生长发育过程中发挥至关重要的作用。尽管黄酮醇(类黄酮的一个分支)在模式植物拟南芥中已经被广泛研究,其代谢途径的调控也比较清楚,但是作为类黄酮的另外一个分支,黄酮以及由糖基转移酶合成的糖基化的产物却鲜有报道。这些代谢物在模式作物如水稻中的自然变异仍待解析。在本研究中,我们解析了水稻中黄酮的自然变异及其遗传和生化基础。通过液质联用技术,结合广泛靶向的检测方法,我们测定了7个囊括原始被子植物、单子叶、双子叶等不同植物叶片中包括黄酮、黄酮醇和黄烷酮在内的类黄酮代谢谱。检测结果表明糖基化黄酮的积累具有物种特异性,在单子叶植物例如水稻中含量很高,这一特点正好为后续解析水稻中黄酮的自然变异提供便利。另外,基于代谢物的全基因组关联分析方法鉴定了三个水稻中控制黄酮糖基化的主要位点,这些位点分布在第1和5号染色体上。在这些位点内部的糖基转移酶被认为是控制水稻类黄酮自然变异的候选基...
【文章来源】:华中农业大学湖北省 211工程院校 教育部直属院校
【文章页数】:127 页
【学位级别】:博士
【文章目录】:
Abstract
摘要
Abbreviations
CHAPTER I Introduction
1.1. Plant metabolites: An overview
1.2. The rise of chemical diversity in plant species
1.3. Modification reactions contribute to metabolic diversity in plant species
1.4. Glycosylation and glycosyltransferases
1.5. The flavonoid glycosyltransferases (Flavonoid UGTs)
1.6. Flavonoid biosynthesis and key genes involved in the pathway
1.7. Identification and functional characterization of flavonoid UGTs
1.7.1. Flavonoid 3-O-glycosyltransferases (F3GTs)
1.7.2. Flavonoid 5-O-glycosyltransferases (F5GTs)
1.7.3. Flavonoid 7-O-glycosyltransferases (F7GTs)
1.7.4. Flavonoid 3′-O-glycosyltransferases (F3′GTs)
1.7.5. Falvoniod C-glycosyltransferases (CGTs)
1.7.6. Flavonoid glycoside glycosyltransferases (GGTs)
1.8. Biological role of flavonoids in protection against stresses
1.9. ‘Omics’ assisted integrated strategies determine gene-metabolite regulatorynetwork and led to gene function in plants
1.9.1. Metabolite profiling manifest a powerful tool for large-scale metaboliteidentification in plants
1.9.2. Metabolic genome-wide association in plants and its implication in functionalgenomics
1.10. Towards our research interests
CHAPTER Ⅱ Material and methods
2.1. Plant materials and metabolite profiling
2.2. Nomenclature of glucosyltransferase (UGT) encoding genes
2.3. Genome-wide association mapping by gene-based analysis
2.4. Phylogenetic tree construction and analysis
2.5. Rice UGT genes cloning and vector construction
2.6. Recombinant protein expression analysis
2.7. Enzyme activity assays
2.8. Enzyme kinetics
2.9. Rice transformation, gene expression analysis by q RT-PCR and targetedmetabolites assessment in transgenic plants
2.9.1. Overexpression vector constructs and transformation into rice
2.9.2. Quantitative RT-PCR analysis
2.9.3. Quantification and analysis of flavonoids in Os UGT706D1 overexpressionplants
2.10. Bioinformatics approaches and analyses
2.10.1. Genebank accession numbers used in phylogentic trees construction
2.10.2. Gene structures and characterization of the conserved PSPG motif ofOs UGTs
2.10.3. Os UGT706D1 protein 3D-structural model generation
2.11. Statistical analysis
Chapter Ⅲ Results
3.1. Flavonoid profiling among plant species
3.2. Genetic control of natural variation of rice flavonoids
3.3. Phylogenetic characterization of putative rice flavonoid UGTs
3.4. Molecular cloning of the candidate rice flavonoid UGT genes
3.5. Biochemical characterization of putative flavonoid UGTs
3.5.1. In vitro enzymatic activities of flavonol UGTs
3.5.2. In vitro enzymatic activities of flavone UGTs
3.6. Activities of flavone UGTs in vivo
3.7. Functional polymorphisms behind the variation of major rice flavones
3.8. Evolutionary and comparative genomic insights into flavonoid UGTs
ChapterⅣ Discussion
4.1. Widely-targeted metabolomics strategy facilitates identification and quantificationof secondary metabolites in plant species
4.2. Metabolite-based genome-wide association study (m GWAS) aids understandingsinto the genetic basis of flavonoids metabolism in rice
4.3. Forward and reverse genomics approaches together disclose the in vitrobiochemical and in planta functions of flavonoid UGT genes
4.4. Functional genetic polymorphisms contribute to the natural variation of majorflavonoid contents in rice
4.5. Inferring the evolutional history of major flavonoid UGT genes provides signaturesinto their conserved evolution
4.6. Conclusion and future directions
References
Appendices
Appendix 1 Flavonoid profiling among 7 plant species
Appendix 2 LC-MS based flavonoid profiling in Arabidopsis
Appendix 3 Genetic control of the natural variation for the flavonoid traits
Appendix 4 Manhattan plots of the m GWAS result for the flavonoid traits
Appendix 5 Single nucleotide polymorphisms (SNPs) behind the natural variation of flavone 7-O-glucosides (Os UGT706D1)
Brief history of author
List of publications
Acknowledgement
【参考文献】:
期刊论文
[1]Novel Natural Allelic Variations at the Rht-1 Loci in Wheat[J]. Aixia Li,Wenlong Yang,Xueyuan Lou,Dongcheng Liu,Jiazhu Sun,Xiaoli Guo,Jing Wang,Yiwen Li,Kehui Zhan,Hong-Qing Ling,Aimin Zhang. Journal of Integrative Plant Biology. 2013(11)
本文编号:3180637
【文章来源】:华中农业大学湖北省 211工程院校 教育部直属院校
【文章页数】:127 页
【学位级别】:博士
【文章目录】:
Abstract
摘要
Abbreviations
CHAPTER I Introduction
1.1. Plant metabolites: An overview
1.2. The rise of chemical diversity in plant species
1.3. Modification reactions contribute to metabolic diversity in plant species
1.4. Glycosylation and glycosyltransferases
1.5. The flavonoid glycosyltransferases (Flavonoid UGTs)
1.6. Flavonoid biosynthesis and key genes involved in the pathway
1.7. Identification and functional characterization of flavonoid UGTs
1.7.1. Flavonoid 3-O-glycosyltransferases (F3GTs)
1.7.2. Flavonoid 5-O-glycosyltransferases (F5GTs)
1.7.3. Flavonoid 7-O-glycosyltransferases (F7GTs)
1.7.4. Flavonoid 3′-O-glycosyltransferases (F3′GTs)
1.7.5. Falvoniod C-glycosyltransferases (CGTs)
1.7.6. Flavonoid glycoside glycosyltransferases (GGTs)
1.8. Biological role of flavonoids in protection against stresses
1.9. ‘Omics’ assisted integrated strategies determine gene-metabolite regulatorynetwork and led to gene function in plants
1.9.1. Metabolite profiling manifest a powerful tool for large-scale metaboliteidentification in plants
1.9.2. Metabolic genome-wide association in plants and its implication in functionalgenomics
1.10. Towards our research interests
CHAPTER Ⅱ Material and methods
2.1. Plant materials and metabolite profiling
2.2. Nomenclature of glucosyltransferase (UGT) encoding genes
2.3. Genome-wide association mapping by gene-based analysis
2.4. Phylogenetic tree construction and analysis
2.5. Rice UGT genes cloning and vector construction
2.6. Recombinant protein expression analysis
2.7. Enzyme activity assays
2.8. Enzyme kinetics
2.9. Rice transformation, gene expression analysis by q RT-PCR and targetedmetabolites assessment in transgenic plants
2.9.1. Overexpression vector constructs and transformation into rice
2.9.2. Quantitative RT-PCR analysis
2.9.3. Quantification and analysis of flavonoids in Os UGT706D1 overexpressionplants
2.10. Bioinformatics approaches and analyses
2.10.1. Genebank accession numbers used in phylogentic trees construction
2.10.2. Gene structures and characterization of the conserved PSPG motif ofOs UGTs
2.10.3. Os UGT706D1 protein 3D-structural model generation
2.11. Statistical analysis
Chapter Ⅲ Results
3.1. Flavonoid profiling among plant species
3.2. Genetic control of natural variation of rice flavonoids
3.3. Phylogenetic characterization of putative rice flavonoid UGTs
3.4. Molecular cloning of the candidate rice flavonoid UGT genes
3.5. Biochemical characterization of putative flavonoid UGTs
3.5.1. In vitro enzymatic activities of flavonol UGTs
3.5.2. In vitro enzymatic activities of flavone UGTs
3.6. Activities of flavone UGTs in vivo
3.7. Functional polymorphisms behind the variation of major rice flavones
3.8. Evolutionary and comparative genomic insights into flavonoid UGTs
ChapterⅣ Discussion
4.1. Widely-targeted metabolomics strategy facilitates identification and quantificationof secondary metabolites in plant species
4.2. Metabolite-based genome-wide association study (m GWAS) aids understandingsinto the genetic basis of flavonoids metabolism in rice
4.3. Forward and reverse genomics approaches together disclose the in vitrobiochemical and in planta functions of flavonoid UGT genes
4.4. Functional genetic polymorphisms contribute to the natural variation of majorflavonoid contents in rice
4.5. Inferring the evolutional history of major flavonoid UGT genes provides signaturesinto their conserved evolution
4.6. Conclusion and future directions
References
Appendices
Appendix 1 Flavonoid profiling among 7 plant species
Appendix 2 LC-MS based flavonoid profiling in Arabidopsis
Appendix 3 Genetic control of the natural variation for the flavonoid traits
Appendix 4 Manhattan plots of the m GWAS result for the flavonoid traits
Appendix 5 Single nucleotide polymorphisms (SNPs) behind the natural variation of flavone 7-O-glucosides (Os UGT706D1)
Brief history of author
List of publications
Acknowledgement
【参考文献】:
期刊论文
[1]Novel Natural Allelic Variations at the Rht-1 Loci in Wheat[J]. Aixia Li,Wenlong Yang,Xueyuan Lou,Dongcheng Liu,Jiazhu Sun,Xiaoli Guo,Jing Wang,Yiwen Li,Kehui Zhan,Hong-Qing Ling,Aimin Zhang. Journal of Integrative Plant Biology. 2013(11)
本文编号:3180637
本文链接:https://www.wllwen.com/kejilunwen/jiyingongcheng/3180637.html
最近更新
教材专著