基于CERES-Maize与PROSAIL模型耦合的冠层反射率模拟分析
[Abstract]:Vegetation canopy is one of the important sites of physical and chemical processes in ecosystem. The theory of radiative transfer model of vegetation canopy lays a theoretical foundation for vegetation remote sensing. Ground LAI measurement methods mainly include direct measurement and indirect measurement, which are suitable for LAI estimation in small areas. Based on crop growth model simulation, LAI of whole crop growth period can be obtained, and the time continuity is strong. In this paper, the input parameters of the PROSAIL model are sensitized to the input parameters of the PROSAIL model. On the basis of perceptual analysis, the CERES-Maize maize growth model was calibrated to obtain the optimal combination of crop genetic parameters, and the LAI variation characteristics at heading stage were simulated. Finally, the model simulation results were compared by using the multi-angle spectral information at different time points and under different spike numbers from the four-dimensional tower crane observation platform to evaluate the model simulation accuracy and determine the error sources. The following: (1) The coupling CERES-Maize model PROSAIL radiation transfer model simulated the change of canopy reflectance at heading stage of maize, and the results showed that the canopy reflectance decreased with time. Although the observed emissivity is consistent with the simulated value, the measured value is higher than the simulated value, especially in the visible band (green light, red light), but the difference is not obvious in the near-infrared band. (2) Parameter sensitivity analysis shows that the change of C (6 (7) has the greatest influence on the reflectivity of the green band; brown pigment has the greatest influence on the red band about 700 nm. Near reflectance has a great influence; dry matter has a great influence on near-infrared reflectance, short-wave near-infrared reflectance and mid-infrared reflectance; the change of equivalent water thickness mainly affects the canopy reflectance in a few areas after 900 nm; the change of blade structure and hot spot coefficient has an effect on the full-band reflectance; LAI has an effect on visible light; C (6) had a little effect on the reflectance, and mainly concentrated around 450 nm. (3) Based on the ground observation data and field experiment data of Huailai Remote Sensing Station in Hebei Province in 2013, the genetic parameters of varieties related to the growth and development of C ERES-Maize model were calibrated, and the observation data of 2014 and 2015 were used. The simulation results show that the two-year LAI simulation is more accurate and can be used to simulate the long time series of maize. Combined with the observation data of meteorological stations in 2016, the LAI distribution range of Maize in the whole growth period is 0.01-5.48, and the LAI at heading period is about 4.75, which shows that the model is in good agreement with the measured data. The results showed that all parameters, such as equivalent water thickness, dry matter mass, leaf inclination, chlorophyll content and carotenoid content, fluctuated slightly and remained basically unchanged. (4) Artificial pruning was used to explore the effect of male panicle number on canopy reflectance. The results showed that the canopy reflectance of panicle-free was the highest and that of whole panicle was the lowest.
【学位授予单位】:石河子大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S513;S127
【参考文献】
相关期刊论文 前10条
1 杨可明;卓伟;刘二雄;汪国平;夏天;;基于光谱特征参数与主成分分析的玉米叶片叶绿素含量BP反演[J];江苏农业科学;2016年07期
2 马建威;黄诗峰;李纪人;李小涛;宋小宁;冷佩;孙亚勇;;改进Sobol算法支持下的PROSAIL模型参数全局敏感性分析[J];测绘通报;2016年03期
3 苏伟;郭皓;赵冬玲;刘婷;张明政;;基于优化PROSAIL叶倾角分布函数的玉米LAI反演方法[J];农业机械学报;2016年03期
4 杨光超;朱忠礼;谭磊;刘绍民;徐自为;柏军华;肖青;;怀来地区蒸渗仪测定玉米田蒸散发分析[J];高原气象;2015年04期
5 包姗宁;曹春香;黄健熙;田丽燕;马鸿元;苏伟;倪希亮;;同化叶面积指数和蒸散发双变量的冬小麦产量估测方法[J];地球信息科学学报;2015年07期
6 柏军华;肖青;柳钦火;闻建光;;遥感产品真实性检验靶场构建方法初步研究[J];遥感技术与应用;2015年03期
7 黄健熙;马鸿元;田丽燕;王鹏新;刘峻明;;基于时间序列LAI和ET同化的冬小麦遥感估产方法比较[J];农业工程学报;2015年04期
8 张栩然;宫阿都;李京;岳建伟;尹晓天;吕潇然;;水分胁迫条件下玉米生产潜力遥感评估模型——以重庆市长寿区为例[J];遥感信息;2015年01期
9 李凤涛;鲁欣欣;王珍珍;杨锦忠;;基于多光谱特征的玉米生物参量估算模型[J];青岛农业大学学报(自然科学版);2014年03期
10 庞泽源;董姝娜;张继权;佟志军;刘兴朋;孙仲益;;基于CERES-Maize模型的吉林西部玉米干旱脆弱性评价与区划[J];中国生态农业学报;2014年06期
相关博士学位论文 前2条
1 肖艳芳;植被理化参数反演的尺度效应与敏感性分析[D];首都师范大学;2013年
2 郭建茂;基于遥感与作物生长模型的冬小麦生长模拟研究[D];南京信息工程大学;2007年
相关硕士学位论文 前7条
1 寇雯红;基于CERES-Maize模型的气候变化对东北地区玉米生产潜力的影响与应对措施模拟[D];山东农业大学;2016年
2 刘天凤;基于PROSAIL模型的干旱半干旱地区LAI遥感反演建模[D];兰州大学;2015年
3 任梓菡;基于PROSAIL模型的反射率-LAI数值分布模式研究[D];兰州大学;2014年
4 姜浩;基于作物模型同化遥感物候信息的冬小麦估产方法研究[D];电子科技大学;2011年
5 朱元励;基于遥感和模型同化的水稻生长监测预测技术研究[D];南京农业大学;2009年
6 崔巧娟;未来气候变化对中国玉米生产的影响评估[D];中国农业大学;2005年
7 马玉平;基于遥感信息的华北冬小麦区域生长模型及其模拟研究[D];中国气象科学研究院;2004年
,本文编号:2187962
本文链接:https://www.wllwen.com/kejilunwen/nykj/2187962.html