当前位置:主页 > 科技论文 > 农业技术论文 >

垫料好氧发酵处理高浓度养殖粪水参数研究

发布时间:2018-08-27 16:06
【摘要】:集约化、规模化养殖业的快速发展,带来了严重的环境问题,畜禽养殖污染已成为我国农业面源的主要污染源之一。本研究主要围绕畜禽养殖粪污无害化、资源化处理,以稻壳、锯末等为主要原料,通过添加高效菌种,制作发酵垫料,研究垫料好氧发酵处理高浓度养殖粪水的工艺参数和处理效率,为生产中应用该方法处理高浓度养殖粪水提供数据基础。试验一研究堆肥模式中水分的蒸发效率。试验选取1 m3垫料池一个,添加并混匀垫料、菌种和粪水,控制C/N在30左右,水分含量在65%左右进行堆肥试验,待温度升高到55℃以上维持24 h后开始试验。试验过程中每天翻抛,在试验第1 d、3 d、6 d、9 d、12 d取样测定含水率,计算水分蒸发效率。结果表明,堆肥模式下水分蒸发效率为8.1 kg/d·m3。试验二研究垫料好氧发酵模式水分蒸发效率。选取三个2 m*1.2 m*0.8 m共1.92 m3初发酵成功垫料池,设定三个不同粪水处理组,粪水添加量分别为8.5 kg/d、16.8 kg/d、25.2 kg/d,每天翻抛加水,试验前中后期分别采样测定发酵堆体水分蒸发效率。试验后期补充垫料菌种,继续观察堆体运行情况。结果表明,16.8 kg/d粪水处理组垫料高温期温度持续时间最长,可以维持70 d,水分蒸发效率为5.4 kg/d·m3;粪水添加量为8.5 kg/d组,堆体维持时间短,高温期能维持42 d,水分蒸发效率为5 kg/d·m3;粪水添加量为25.2 kg/d组,堆体水分含量升高最快,发酵后期水分可达70%,在高温期维持40 d,堆体平均温度低于16.8 kg/d组,同时发酵后期出现渗滤液,超过堆体最大处理能力,水分蒸发效率为7.8 kg/d·m3。分析认为粪水添加量为8.7 kg/d·m3时,有最佳的处理效率,水分蒸发效率为5.4 kg/d·m3。补充垫料菌种后,温度明显回升,但维持时间较短。试验三研究垫料好氧发酵模式垫料基质变化规律。在试验二条件下,在试验第1 d、7 d、14 d、21 d、28 d、35 d、42 d、49 d、56 d对角线三点平行取样,探究垫料基质随发酵时间的变化规律;在试验后期样品采集完后补充垫料菌种,继续进行试验,在补充垫料后第70 d、77 d及84 d取样,探究补充垫料菌种后堆体利用时间及垫料基质变化。结果表明,随着发酵时间的持续,C含量明显下降(P0.01);N含量明显升高(P0.01);C/N显著降低(P0.01);P含量显著升高(P0.01);pH先升高后降低,但始终维持在有利于发酵的范围。根据垫料基础参数变化可以推知此次好氧发酵垫料利用时间在三个月左右,同时高温发酵能有效抑制大肠杆菌的活性,补充垫料后可以延缓C/N的下降,延长堆体发酵时间。试验四研究垫料好氧发酵处理高浓度养殖粪水在生产中的应用效果。以实际生产应用垫料处理为研究对象,以稻壳、锯末为垫料,粪水定期加入,定期翻抛。从初发酵开始连续记录发酵过程温度变化,发酵不同时间采集垫料样品分析其基础参数变化。结果表明,初发酵阶段升温迅速,3天即可到达70℃,30 cm和60 cm处最高温度可超过72℃。随着粪水的持续加入,垫料高温维持能力开始下降,垫料温度下降,水分含量持续升高,连续使用3个月垫料水分含量达到70%,pH从8.8降至6.75,C含量从42%降至40%,N含量从0.47%升至0.74%,C/N从90降至56。垫料基础参数表明,管理得当,控制粪水加入量,发酵垫料可以继续维持发酵,持续有效处理养殖粪水,达到粪水无害化和资源化处理的目的。综上所述,通过垫料好氧发酵可以有效处理养殖粪水,达到无害化、资源化处理的要求,为养殖粪水处理提供了可行的思路。当前试验条件下,粪水添加量为8.7 kg/d·m3时,有最佳的处理效率,水分蒸发效率为5.4 kg/d·m3。
[Abstract]:The rapid development of intensive and large-scale aquaculture has brought serious environmental problems. Animal and poultry breeding pollution has become one of the main non-point sources of agricultural pollution in China. Experiment 1 studied the evaporation efficiency of water in composting model. One of the 1 m3 bedding pools was selected to add and mix the bedding material, bacteria and fecal water. The C/N ratio was controlled at about 30. The composting experiment was carried out at about 65% and started 24 hours after the temperature was above 55 C. The moisture content was measured and the evaporation efficiency was calculated on the first, third, sixth, ninth and twelfth days of the experiment. The results showed that the evaporation efficiency of water under the composting mode was 8.1 kg/d m3. The water evaporation efficiency of the fermentation heap was determined by three 2 m * 1.2 m * 0.8 m initial fermentation bedding ponds with a total of 1.92 m 3. The results show that the 16.8 kg/d fecal water treatment group has the longest temperature duration at high temperature, which can maintain 70 days, and the evaporation efficiency of water is 5.4 kg/d.m3; the fecal water addition group is 8.5 kg/d, which can maintain 42 days at high temperature, and the evaporation efficiency of water is 5 kg/d.m3; the fecal water addition group is 25.2 kg/d, and the water content is 5.4 kg/d.m3. The content of water increased fastest in the late fermentation stage, and reached 70%. The average temperature of the pile was below 16.8 kg/d for 40 days in the high temperature stage. At the same time, leachate appeared in the late fermentation stage, which exceeded the maximum treatment capacity of the pile. The water evaporation efficiency was 7.8 kg/d.m3. 4 kg / d. m3. The temperature of the substrate increased obviously, but the maintenance time was short. Experiment 3 studied the change rule of the substrate in the aerobic fermentation model. After the sample was collected at the end of the experiment, the bacterial strains were added to the bedding, and the samples were taken on the 70th, 77th and 84th days after the bedding. The results showed that the C content decreased significantly (P 0.01), the N content increased significantly (P 0.01), and the C/N content decreased significantly (P 0.01). According to the change of the basic parameters of the mat, it can be inferred that the utilization time of the aerobic fermentation mat is about three months, and the high temperature fermentation can effectively inhibit the activity of E. coli. After supplementing the mat, the decrease of C/N can be delayed and the fermentation in the heap can be prolonged. Experiment 4. Study on the application effect of aerobic fermentation with bedding material in the production of high-concentration cultured manure. Take the actual production and application of bedding material as the research object, with rice husk and sawdust as bedding material, the manure water is added regularly and dumped regularly. The results showed that the temperature in the initial fermentation stage increased rapidly, reaching 70 C in 3 days, and the highest temperature at 30 cm and 60 cm could exceed 72 C. With the continuous addition of manure water, the high temperature maintenance ability of the mat began to decline, the temperature of the mat decreased, and the moisture content continued to increase. The moisture content of the mat reached 70% and the pH decreased from 8.8 to 6. 75, C content decreased from 42% to 40%, N content increased from 0.47% to 0.74%, C/N from 90 to 56. The basic parameters of the mat showed that the mat could keep fermentation under proper management and control the amount of fecal water added. The mat could be used to treat the fecal water continuously and effectively to achieve the purpose of harmless and resource-based treatment. Under the current experimental conditions, when the amount of manure added is 8.7 kg/d.m3, the treatment efficiency is the best, and the water evaporation efficiency is 5.4 kg/d.m3.
【学位授予单位】:山东农业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X713

【相似文献】

相关期刊论文 前10条

1 陈文威;;高温好氧发酵处理城市生活垃圾[J];环境卫生工程;2006年02期

2 盛金良;龚莹;宫宁;施炜;;污泥膜覆盖好氧发酵通风调节方法[J];环境工程学报;2013年02期

3 杨鹏;朱岩;杜连柱;乔汪砚;张克强;杨雪梅;;蔬菜废弃物好氧发酵腐殖液肥料化试验[J];农业机械学报;2013年12期

4 孙红宾,赵世星,董燕,陈焱;高温好氧发酵——生物降解技术处理城市生活垃圾的研究[J];中国环境管理;2002年S1期

5 郭景峰,孙长征;畜禽粪便太阳能好氧发酵系统及其技术[J];当代畜牧;2004年09期

6 万小春;张玉华;高新星;张伟;刘东生;徐哲;;农村有机生活垃圾和秸秆快速好氧发酵技术参数研究[J];农业工程学报;2008年04期

7 桓明辉;李杨;刘晓辉;邓春海;高晓梅;敖静;王平;;畜禽粪便好氧发酵优势菌群的分离及微生物菌群变化研究[J];山东农业科学;2013年04期

8 卢寰;;多途径实验法在植物性生活垃圾好氧发酵堆肥研究中的应用[J];安徽科技;2006年09期

9 赵岩;王洪涛;陆文静;;养殖废物好氧发酵生产固液混合态肥料技术研究[J];农业环境科学学报;2007年01期

10 吕建军;;自动吞沫机在生物好氧发酵中的应用[J];发酵科技通讯;2009年01期

相关会议论文 前3条

1 马闯;高定;刘洪涛;郑国砥;陈俊;李雪怡;黄超文;沈玉君;蔡璐;郭瑞;周海宾;陈同斌;;智能控制污泥好氧发酵一体化装置的工程应用效果研究[A];全国排水委员会2012年年会论文集[C];2012年

2 陈俊;高定;周海宾;解龙;闫飞;李雪怡;郭文娟;李智;;CTB智能控制好氧发酵工艺在松江污泥处理厂的应用[A];全国排水委员会2012年年会论文集[C];2012年

3 陈万勋;;高温好氧发酵有机肥的生产和应用(摘要)[A];中国地壤学会第十次全国会员代表大会暨第五届海峡两岸土壤肥料学术交流研讨会文集(面向农业与环境的土壤科学专题篇)[C];2004年

相关重要报纸文章 前3条

1 李渊;农业废弃物新型发酵装置研制成功[N];江苏农业科技报;2014年

2 见习记者 刘充辉;“中国冷鲜肉专家”打造生态养猪体系[N];中国食品报;2010年

3 特约记者 刘苏华 通讯员 李长虹;蔡伦中科:植根低碳沃土研发绿色肥料[N];中国化工报;2010年

相关博士学位论文 前1条

1 丁健;基于人工智能和代谢调控的典型好氧发酵过程在线控制和故障诊断[D];江南大学;2014年

相关硕士学位论文 前7条

1 何贵生;有机废弃物好氧发酵设备开发研究[D];安徽工业大学;2016年

2 靳晓晨;娄彻氏链霉菌好氧发酵改善秸秆流变性能的研究[D];南京理工大学;2017年

3 司海丽;几种农业废弃物好氧发酵产物的性状及田间应用效果研究[D];宁夏大学;2014年

4 王星;有机固废好氧发酵过程中氨氧化特性和变化规律研究[D];广西大学;2014年

5 潘美英;城市生活污水污泥好氧发酵工艺条件研究[D];四川大学;2006年

6 陈琳;Cu、Cd对农业废弃物发酵过程中微生物和酶活性的影响[D];西北农林科技大学;2012年

7 孙莹;霉菌SH-24好氧发酵产生琥珀酸的初步研究[D];烟台大学;2007年



本文编号:2207766

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/nykj/2207766.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户819cf***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com