轮毂电机电动汽车电子差速控制研究
发布时间:2018-03-08 07:48
本文选题:电动汽车 切入点:轮毂电机 出处:《辽宁工业大学》2016年硕士论文 论文类型:学位论文
【摘要】:电动汽车凭借其无污染、耗能低的优点,近几年得到了高度重视。而轮毂电机电动汽车结构布置比较简单,传动效率较高,实现了整车轻量化的目标,更是受到了广泛关注。轮毂电机电动汽车的电子差速控制,是以取代传统汽车的机械差速器为目的而设计的,以实现驱动电机之间的协调控制为目标,从而保证车辆转向行驶的稳定性,是应当解决的关键技术之一。因此论文对轮毂电机电动汽车电子差速控制做了进一步研究。论文的主要研究内容如下:(1)论文首先根据汽车模型参数,基于CarSim软件与MATLAB/Simulink软件,建立了一个能真实反映车辆运行状态的轮毂电机电动汽车整车仿真模型,并对建立的电动汽车模型进行了仿真分析验证,为电子差速控制研究奠定了了研究基础。(2)电子差速控制为了达到其控制目的,需要精确测量出车辆运动状态量。但是汽车的实际运动状态量如车速,虽然可以用一些特殊设备测量但是成本比较高,有些状态量如质心侧偏角,甚至不能测量。论文应用卡尔曼滤波理论,对车辆行驶状态量进行估计,并在CarSim软件中设置典型的试验工况对估计算法进行了仿真试验验证。(3)轮毂电机电动汽车在转向行驶时,左右两侧的驱动车轮在相同时间内驶过不同的轨迹,由于其驱动车轮均可以进行独立的控制,因此必须设计出一种控制用来实现左右两侧车轮的差速控制,这种控制被称为电子差速控制。为了实现差速控制,建立了转向运动学参考模型,基于该模型在MATLAB/Simulink软件中建立汽车电子差速控制仿真模型。确定了电子差速转速转矩控制算法,设计了驱动力矩分配器,通过CarSim与MATLAB/Simulink联合,通过控制驱动轮驱动力矩实现实际轮速跟踪参考轮速,通过对驱动轮驱动力矩再分配控制,实现差速差驱动力矩控制的思想。(4)为了验证所设计的电子差速控制算法的有效性,首先选择CarSim软件中的开环和闭环试验工况对控制方法进行了初步试验验证。为了进一步说明电子差速控制算法的有效性,在汽车驾驶模拟器硬件在环试验台中设置典型试验工况对其进行了再次试验验证。并从车辆驱动控制,操纵稳定性,行驶安全性等角度对电子差速控制进行客观的评价,结果表明设计的电子差速控制策略能够实现轮毂电机电动汽车转向差速性能。
[Abstract]:Electric vehicles (EV) have been attached great importance to in recent years because of their advantages of no pollution and low energy consumption. However, the electric vehicles with hub motors have simple structure layout and high transmission efficiency, thus achieving the goal of lightening the whole vehicle. The electronic differential speed control of the electric vehicle with hub motor is designed to replace the mechanical differential of the traditional automobile, and the goal is to realize the coordination control between the drive motors. To ensure the stability of the vehicle steering, It is one of the key technologies that should be solved. Therefore, the paper makes further research on the electronic differential speed control of the hub motor electric vehicle. The main research contents of this paper are as follows: firstly, according to the parameters of the vehicle model, the paper is based on the CarSim software and the MATLAB/Simulink software. A simulation model of hub motor electric vehicle is established, which can reflect the running state of the vehicle, and the simulation analysis of the established electric vehicle model is carried out. It lays a foundation for the study of electronic differential speed control. In order to achieve its control purpose, it is necessary to accurately measure the motion state of the vehicle. But the actual motion state of the vehicle is such as the speed of the vehicle. Although it can be measured with some special equipment, the cost is relatively high, and some state variables such as the deviation angle of the center of mass can not even be measured. In this paper, the Kalman filter theory is used to estimate the driving state of the vehicle. In the CarSim software, typical test conditions are set to verify the estimation algorithm. The simulation results show that when the wheel motor electric vehicle is steering, the driving wheels on both sides of the wheel drive through different tracks in the same time. Since the wheels can be controlled independently, a kind of control must be designed to realize the differential speed control of the left and right wheels. This control is called electronic differential speed control. The steering kinematics reference model is established. Based on the model, the simulation model of automobile electronic differential speed control is established in MATLAB/Simulink software. The electronic differential speed torque control algorithm is determined, and the drive torque distributor is designed, which is combined by CarSim and MATLAB/Simulink. In order to verify the effectiveness of the electronic differential control algorithm, the actual wheel speed tracking reference wheel speed is realized by controlling the driving torque of the drive wheel, and the idea of differential differential drive torque control is realized by redistribution control of the driving moment of the drive wheel. First, the open loop and closed loop test conditions in CarSim software are selected to verify the control method. In order to further illustrate the effectiveness of the electronic differential speed control algorithm, The hardware of the vehicle driving simulator is tested again under typical test conditions in the ring test rig. The electronic differential speed control is objectively evaluated from the aspects of vehicle driving control, handling stability, driving safety and so on. The results show that the electronic differential control strategy can realize the steering differential performance of the hub motor electric vehicle.
【学位授予单位】:辽宁工业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:U469.72
【参考文献】
相关期刊论文 前10条
1 孙明江;段敏;李刚;;基于CarSim的前轮独立驱动纯电动汽车仿真模型建立[J];汽车工程师;2015年08期
2 孙明江;段敏;李刚;;轮毂电机驱动电动汽车电子差速器仿真研究[J];农业装备与车辆工程;2015年02期
3 卫绍元;解瑞春;李刚;;基于容积卡尔曼滤波的车辆行驶状态估计[J];机械设计与制造;2015年01期
4 李刚;王超;石晶;韩海兰;;基于模糊控制的汽车直接横摆力矩研究[J];计算机仿真;2014年12期
5 严运兵;彭思仑;;后驱电动轮汽车电子差速控制影响因素分析[J];汽车工程;2014年02期
6 李刚;宗长富;;四轮独立驱动轮毂电机电动汽车研究综述[J];辽宁工业大学学报(自然科学版);2014年01期
7 丁洋;王保华;麻友良;;基于dSPACE/CarSim的SBW硬件在环仿真平台开发[J];湖北汽车工业学院学报;2013年02期
8 洪亮;杨亚联;宋安兴;叶盼;;人-车-路闭环的汽车稳定性控制模拟仿真试验研究[J];汽车工程学报;2013年03期
9 陈东;徐寅;梁华军;;双电机后轮驱动混合动力汽车电子差速控制的研究[J];汽车工程;2013年01期
10 林h,
本文编号:1583004
本文链接:https://www.wllwen.com/kejilunwen/qiche/1583004.html