当前位置:主页 > 科技论文 > 汽车论文 >

自动驾驶车辆城区道路环境换道行为决策方法研究

发布时间:2018-08-11 19:13
【摘要】:自动驾驶车辆近些年来逐渐成为热点话题,许多高校、传统车企和互联网企业纷纷展开研究,且已经发展到一定水平,但若想真正的实现在真实城区道路上行驶,仍有许多问题需要解决。为使自动驾驶车辆能够在城区道路环境中自如行驶,本文针对自动驾驶车辆在城市交通环境中的行为决策问题展开了深入的研究。针对城区道路环境中换道行为,提出了基于驾驶员换道经验的自动驾驶车辆换道决策模型。为模仿驾驶员决策过程,提出了类人的自动驾驶车辆的直觉决策方法。首先基于离线学习,使自动驾驶车辆具有人类驾驶员的驾驶经验,再利用在线学习,使自动驾驶车辆在线学习驾驶员经验,从而模拟人类驾驶员行驶过程中经验积累的过程。然而由于时间有限,本文仅针对直觉决策模型中离线学习部分展开了深入的研究。本文针对换道场景,提出了基于驾驶员经验的自动驾驶车辆换道决策模型,基于粗糙集神经网络融合算法提取驾驶员换道规则,在使用粗糙集对驾驶员换道数据进行规则提取的过程中,使用人工神经网络算法保证规则提取结果的一致性。规则提取完成后,使用分层状态机方法建立分层换道规则库,将驾驶员规则应用于自动驾驶决策模型中,运用Prescan和Simulink/Stateflow实现城区道路环境换道联合仿真,仿真结果表明,该方法可以使自动驾驶车辆在车流中进行安全的换道,验证了规则的有效性。同时,为了验证自动驾驶车辆换道决策模型在真实城区道路环境中的可行性,首先使用V-rep和Visual Studio进行联合仿真来验证换道决策算法的安全性,之后基于北京理工大学智能车辆研究所比亚迪自动驾驶车辆在北京市三环道路上进行测试。实验结果说明通过本文所建立的决策模型,自动驾驶车辆可以在城区道路环境中安全换道。最后对自动驾驶车辆换道决策模型的类人性进行了分析,分析结果表明本文所建立的自动驾驶车辆换道决策模型与人类驾驶员决策较相似,离线学习驾驶员经验的效果较好。
[Abstract]:In recent years, autonomous vehicles have gradually become a hot topic. Many universities, traditional car companies and Internet enterprises have carried out research, and have developed to a certain level, but if they really want to drive on the roads of real urban areas, There are still many problems to be solved. In order to enable autonomous vehicles to travel freely in urban road environment, this paper focuses on the behavior decision of autonomous vehicles in urban traffic environment. According to the changing behavior in urban road environment, a decision model of automatic driving vehicle change based on driver's experience is proposed. In order to imitate the decision-making process of drivers, a human-like intuitionistic decision-making method for autonomous vehicles is proposed. Firstly, based on off-line learning, the self-driving vehicle has the driving experience of the human driver. Then, the self-driving vehicle can learn the driver's experience online by using the on-line learning, so as to simulate the process of the experience accumulation in the driving process of the human driver. However, due to the limited time, this paper focuses on the offline learning part of the intuitionistic decision model. In this paper, based on driver's experience, a decision model of automatic driving vehicle change is proposed, and the driver changing rules are extracted based on rough set neural network fusion algorithm. In the process of using rough set to extract the rules of the driver's change data, the artificial neural network algorithm is used to ensure the consistency of the rule extraction results. After the rule extraction is completed, the hierarchical change rules database is established by using the hierarchical state machine method, and the driver rules are applied to the automatic driving decision model. The combined simulation of road environment change in urban area is realized by using Prescan and Simulink/Stateflow. The simulation results show that. This method can make the automatic driving vehicle change the lane safely in the traffic flow, and verify the validity of the rules. At the same time, in order to verify the feasibility of the automatic driving vehicle change decision model in the real urban road environment, V-rep and Visual Studio are used to simulate the security of the algorithm. BYD self-driving vehicles based on Beijing Institute of Technology Intelligent vehicle Research Institute were then tested on the third Ring Road in Beijing. The experimental results show that the self-driving vehicle can change lanes safely in the urban road environment through the decision model established in this paper. Finally, the human nature of the automatic driving vehicle change decision model is analyzed. The results show that the model is similar to the human driver's decision, and the effect of off-line learning driver's experience is better.
【学位授予单位】:北京理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:U463.6

【参考文献】

相关期刊论文 前10条

1 陈雪梅;田赓;苗一松;;面向智能驾驶行为的机器学习[J];道路交通与安全;2014年06期

2 诸葛程晨;唐振民;石朝侠;;基于多层Morphin搜索树的UGV局部路径规划算法[J];机器人;2014年04期

3 Lipu Zhou;Zhidong Deng;;A New Algorithm for the Establishing Data Association Between a Camera and a 2-D LIDAR[J];Tsinghua Science and Technology;2014年03期

4 王艳平;;基于变精度粗糙直觉模糊集的决策规则获取[J];计算机工程与科学;2014年03期

5 王丽娟;杨习贝;杨静宇;吴陈;;基于多粒度理论的不完备决策规则获取[J];南京理工大学学报;2013年01期

6 姜岩;赵熙俊;龚建伟;熊光明;陈慧岩;;简单城市环境下地面无人驾驶系统的设计研究[J];机械工程学报;2012年20期

7 杨习贝;杨静宇;;邻域系统粗糙集模型[J];南京理工大学学报;2012年02期

8 王怀亮;;交叉验证在数据建模模型选择中的应用[J];商业经济;2011年10期

9 徐亮;张自力;;基于MAS的驾驶行为决策模型的研究[J];计算机工程与科学;2010年05期

10 彭莉娟;康瑞;;考虑驾驶员特性的一维元胞自动机交通流模型[J];物理学报;2009年02期

相关博士学位论文 前2条

1 陈佳佳;城市环境下无人驾驶车辆决策系统研究[D];中国科学技术大学;2014年

2 孙振平;自主驾驶汽车智能控制系统[D];国防科学技术大学;2004年

相关硕士学位论文 前2条

1 李勇;无信号灯十字交叉口协作车辆控制研究[D];北京理工大学;2015年

2 储兵;基于粗糙集的神经网络在数据挖掘中的应用研究[D];江苏科技大学;2013年



本文编号:2177971

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/qiche/2177971.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ac581***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com