应用于高寒地区的电动汽车电池管理关键技术研究
[Abstract]:Electric vehicle power battery system is the energy source of electric vehicle and the core component of electric vehicle. The complex electrochemical reactions inside the battery are easily affected by temperature. The low temperature in winter and large temperature difference in winter and summer in high latitude and cold regions bring new challenges to the battery management of electric vehicle. Management is the basis of improving battery efficiency, prolonging battery life, ensuring battery safety, and optimizing system energy management strategies. However, due to the temperature characteristics of the battery, the battery accelerates aging at high temperatures, resulting in irreversible capacity loss. The large number of lithium ions involved in the reaction decreases, resulting in the decrease of the capacity and power characteristics of the battery pack. Lithium dendrite piercing through the diaphragm may even occur during charging, resulting in internal short circuit and threatening the safety of use. At the same time, the imbalance of power caused by the inconsistent characteristics of the battery itself after long-term recycling not only affects the capacity and power characteristics of the battery pack, but also affects the battery pack These problems greatly restrict the performance of the battery system and increase the risk and cost of the battery system. In view of the above problems, this paper aims to solve the problem of the battery system of electric vehicles due to the external environment temperature and the battery itself. In order to achieve this goal, the mechanism of battery performance attenuation caused by temperature is analyzed theoretically and practically, and the low-temperature operation characteristics of battery system in electric vehicles are formulated. The low temperature thermal management strategy of series battery pack is to adopt the low temperature preheating control method based on variable power regulation in the low temperature preheating mode to improve the performance of the battery. In order to solve the problem of SOC unbalance which affects the performance of batteries most seriously, a series battery equalization system is designed and an optimal equalization control strategy is developed to improve the power consistency of batteries and alleviate the unbalance of SOC on batteries. Specific research contents are as follows: Aiming at the performance attenuation mechanism of EV battery pack, the influence mechanism of environmental temperature and battery characteristic parameter consistency on the performance of series Li-ion battery pack is analyzed theoretically, and the effect of ambient temperature on battery internal resistance, open circuit voltage, discharge capacity and peak power is verified by experiments. The influence of internal resistance, open circuit voltage and inconsistency of power on battery terminal voltage, battery pack capacity and peak power is analyzed, and the influence of battery pack capacity and power attenuation rate on different types of inconsistency is defined. The performance attenuation of battery packs is evaluated. In addition, the differences of temperature and aging caused by the inconsistency of battery capacity are analyzed. Extended Kalman filter is used to estimate the model parameters on-line, and the peak charge and discharge power is estimated according to the battery voltage and current constraints. The model for estimating the internal temperature of the battery is established, and the influence of entropy and overpotential on the overall heat generation of the battery is analyzed. Based on the analysis of the influence, a method for estimating the internal temperature of the battery based on autogenous heat is proposed, and the internal temperature of the battery is estimated by the surface and ambient temperature of the battery collected in real time. By analyzing the low temperature preheating model of batteries, the method to determine the preheating target temperature is given. A fuzzy control method of variable power low temperature preheating based on proportional factor self-tuning is proposed. The preheating power is adjusted according to the maximum temperature difference on the surface of the batteries and the average temperature of the batteries. The peak power and internal temperature of the battery are monitored during the operation of the battery after moving. The power capacity of the battery under the condition of variable temperature is estimated by the peak power estimation method. The internal temperature of the battery is estimated accurately according to the surface and environmental temperature of the battery and the internal temperature estimation method. Battery performance attenuation, heat generation and temperature inconsistency caused by weighing are discussed. An active equalization structure of series battery pack based on bidirectional full bridge is proposed to realize bidirectional active equalization between series battery pack module and any unit in the module. Simply, according to the initial SOC imbalance state of the battery, the strategy searches for the global optimization, predicts the required equalization steps, time and power distribution after equalization in advance, seeks the optimal way to achieve the same power in the shortest time, and avoids the energy waste caused by reciprocating equalization.
【学位授予单位】:哈尔滨工业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:U469.72
【相似文献】
相关期刊论文 前10条
1 王鸿雁;;2013年隔膜大战 锂电池产品整体价格将下拉[J];能源研究与利用;2013年03期
2 ;首条自主产权湿法锂电池隔膜生产线投产[J];中国有色冶金;2013年05期
3 杨璐;王阳;肖雨;章永春;;手机锂电池的安全性能管控[J];现代电信科技;2013年09期
4 丁运长;中国电子学会化学与物理电源学会、中国电工技术学会电池专业委员会、国防科工委电池专业组 联合召开的第十六届全国化学与物理电源会议论文题录[J];电池;1984年01期
5 李诚芳;电池隔膜[J];电池;1986年02期
6 ;1992年《电池》1~6期分类总目次[J];电池;1992年06期
7 杨林;锂电池隔膜纸在重庆通过鉴定[J];电池工业;1996年03期
8 李登科;王丹;;动力锂电池隔膜的技术要求及研究进展[J];浙江化工;2014年05期
9 汤雁;苏晓倩;刘浩杰;;锂电池隔膜测试方法评述[J];信息记录材料;2014年02期
10 李峰;;大连振邦自主研制成功纳米纤维锂电池隔膜[J];功能材料信息;2006年06期
相关会议论文 前5条
1 满长阵;唐昶宇;江彭;刘昊;黄家伟;梅军;刘焕明;;利用超热氢交联技术改善锂电池隔膜浸润性的研究[A];2013年全国高分子学术论文报告会论文摘要集——主题N:高分子加工与成型[C];2013年
2 孙亚颇;焦晓宁;;新型电池隔膜的研究现状及发展前景[A];第七届中国功能材料及其应用学术会议论文集(第2分册)[C];2010年
3 ;加强管理,,提高“鱼3—丙”一次电池隔膜的质量——中国电子科技集团公司第十八研究所 第四研究室电池隔膜QC小组[A];2003年度电子工业优秀质量管理小组成果质量信得过班组经验专集[C];2003年
4 高效岳;沈涛;唐琛明;邱德瑜;唐定骧;;Zn-Ni电池的进展[A];中国电池工业协会2002年学术交流会论文集[C];2002年
5 吴耀明;于波;刘宁;王立民;;快充MH-Ni电池AB3型负极合金与隔膜相互匹配的研究[A];第二届中国储能与动力电池及其关键材料学术研讨与技术交流会论文集[C];2007年
相关重要报纸文章 前10条
1 罗兵;我国锂电池隔膜技术谋求破壁[N];中国高新技术产业导报;2013年
2 山水;美国企业开发出新型电池隔膜[N];中国石化报;2007年
3 本报记者 杨明;锂电池:大热刚刚开始[N];中国工业报;2010年
4 记者 张清华 通讯员 崔巍;锂电隔膜制造 基地昨日试产[N];深圳商报;2010年
5 记者 刘向红;九九久拟建锂电池隔膜生产线[N];上海证券报;2011年
6 见习记者 覃秘;拟定增投建锂电池隔膜项目 沧州明珠进军新能源[N];上海证券报;2011年
7 证券时报记者 谢楠;锂电池隔膜产业大跃进 高端领域仍是蓝海[N];证券时报;2012年
8 本报记者 赵笛;青岛能源所成功研发新型环保锂电池隔膜[N];青岛日报;2012年
9 本报记者 罗兵;中国锂电池隔膜技术谋求破壁[N];中国质量报;2013年
10 本报记者 李香才;财政部支持电池隔膜产业化[N];中国证券报;2013年
相关博士学位论文 前8条
1 闫宇星;非水电解质锂空气一次电池关键影响因素的研究[D];昆明理工大学;2015年
2 吕慧;锂—空气电池氧电极催化剂—纳米四氧化三铁及复合材料的制备与性能[D];中国矿业大学;2015年
3 孙金磊;应用于高寒地区的电动汽车电池管理关键技术研究[D];哈尔滨工业大学;2016年
4 张玲玲;过充过放和外部短路后LiCoO_2/MCMB电池长循环容量衰减机制研究[D];哈尔滨工业大学;2016年
5 陈峭岩;电动汽车电池状态估计及均衡管理研究[D];天津大学;2014年
6 刘思思;二次锂电池锂基负极与电解质界面研究[D];上海交通大学;2012年
7 尹利超;二次锂电池用硫基复合正极材料的研究[D];上海交通大学;2012年
8 门阅;钒电池材料改性对正极电对催化活性及电池性能的影响[D];东北大学;2012年
相关硕士学位论文 前10条
1 张佳卫;锂硫电池用碳/硫复合正极材料的制备及电化学性能研究[D];浙江理工大学;2016年
2 胡宇翔;二氧化锰基催化剂在可充锂空气电池中应用研究[D];南开大学;2015年
3 唐豪;锂硫电池硫正极、隔膜改性及电化学性能研究[D];江苏大学;2016年
4 徐丰;新型锂硫电池的设计与性能研究[D];南京大学;2016年
5 辛培明;锂硫电池正极材料的制备及性能研究[D];吉林大学;2016年
6 刘晓红;低温聚合间位型芳纶电纺制备拒水亲液型锂电池隔膜[D];天津工业大学;2016年
7 罗卜尔思;电动汽车动力电池直接接触式液冷系统的研究[D];华南理工大学;2016年
8 张竞;以花粉为模板的锂空气电池多孔碳电极材料的制备及其性能研究[D];昆明理工大学;2016年
9 李鑫;高能可充熔盐Fe-空气电池体系构建与性能研究[D];东北石油大学;2016年
10 成林;锂电池隔膜关断性能测试系统的研究与设计[D];西安建筑科技大学;2006年
本文编号:2242749
本文链接:https://www.wllwen.com/kejilunwen/qiche/2242749.html