重卡后桥减速器用圆锥滚子轴承大挡边结构优化
[Abstract]:The rear axle reducer of heavy truck is a part of the heavy truck transmission system. The tapered roller bearing used in the reducer is one of the key parts to ensure its normal operation. The rear axle reducer of a heavy truck uses 32013 type tapered roller bearing. Because the bearing has to operate under the bad conditions of heavy load, heavy impact load and radial and axial load, the large flange will occasionally break in the axial direction. This will reduce the reliability and service life of bearings. Therefore, it is necessary to analyze the fracture phenomenon of bearing big flange, to find out the cause of fracture and to solve the problem, to ensure the safe and reliable operation of bearing. The main contents of this paper are as follows: (1) the causes of fracture failure of tapered roller bearing 32013 big flange are studied. The structure of tapered roller bearing 32013 is analyzed and the stress state of single bearing is determined. According to the bearing load form and related parameters of rear axle reducer of heavy truck under actual working condition, the load magnitude of bearing is calculated. The calculation results show that the bearing with fracture failure is operated under the condition of overload, so overload is the fundamental reason for the failure of bearing fracture. (2) the method to improve the strength of large flange is studied. Based on the analysis of the factors affecting the strength of the large flange of the bearing, the method of increasing the thickness of the flange to reduce the stress on the flange is put forward. The stress values corresponding to the thickening of the flange are calculated by using the traditional mechanics and finite element software respectively. The results show that the strength of the flange can be improved by increasing the thickness of the flange. Then, the bearing structure with thickened edge is studied. Based on the lightweight design criterion of bearing design, the dimension direction of thickening of large flange is determined. According to the standard 32013 structure diagram, the length and diameter of roller are adjusted accordingly. The structure diagram of bearing inner ring with thickened flange is obtained. (3) finite element analysis is used to analyze the force condition of bearing big flange. Through the simulation analysis of the load on the bearing model under rated load and overload by ANSYS software, the contact stress at the big flange under different loads is calculated. It is found that the stress and deformation degree of the bearing under overload is higher than that at rated load. Through the finite element analysis of different flange thickness models, it is found that with the increasing of the thickness of the flange, the stress at the big flange will gradually decrease, which proves the feasibility that increasing the thickness of the flange can reduce the stress of the flange. Then, according to the structural form of large flange and the effect of force acting point on the strength of flange, the optimized size of large flange is determined, and the formula for calculating the position of acting point and the range of angle between flange and inner raceway are deduced. The optimized size of the large flange structure is obtained. (4) the fatigue life of the optimized tapered roller bearing 32013 is verified. According to the structural size diagram of the optimized bearing, the reasonable production and processing technology and the testing requirements were made for the bearing. The fatigue test was carried out on the optimized bearing by using the fatigue life tester. It was found that when the thickness of the flange was 5.49 卤0.01, 蠄 89 掳270.89 掳38', Bearing no longer appears fracture failure phenomenon, this time the bearing life can fully meet the requirements.
【学位授予单位】:兰州理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:U463.218
【相似文献】
相关期刊论文 前10条
1 王玉敏,王振英,刘丽红,李玉红;推力圆锥滚子轴承挡边强度计算[J];轴承;2005年06期
2 王晓磊;;大倾角挡边带式输送机输送能力的计算解析及合理挖潜[J];科技传播;2012年16期
3 张悦霞,谢忠明,葛春东;推力调心滚子轴承大挡边的车削[J];轴承;2001年06期
4 郑继旺;滕敏;胡盈真;洪新华;;波状挡边带支撑装置的设计与应用[J];河南科技学院学报;2009年04期
5 李在忠,沈长民;大倾角波状挡边带式输送机改进[J];起重运输机械;1993年03期
6 孟文俊,王鹰,李跃;波状挡边输送带的结构分析[J];太原重型机械学院学报;1996年03期
7 刘锦文;提高波形挡边输送带质量的研究和技术改进[J];橡塑技术与装备;2003年06期
8 孙克强;挡边油沟样板磨削夹具[J];轴承;1982年05期
9 杨咸启;推力调心滚子轴承接触应力计算与挡边设计[J];轴承;1992年01期
10 彭传圣,黄涛;波状挡边带式垂直提升机的改进[J];起重运输机械;1998年12期
相关会议论文 前5条
1 陆卫刚;张富洪;;波状挡边胶带机与斗式提升机性能与投资对比[A];面向21世纪迎接物料搬运技术新发展——中国机械工程学会物料搬运分会第六届年会论文集[C];2000年
2 张富洪;陆卫刚;徐国兵;华忠;;波状挡边带式输送机在港口的应用[A];面向21世纪迎接物料搬运技术新发展——中国机械工程学会物料搬运分会第六届年会论文集[C];2000年
3 王国平;;大倾角波状挡边带式输送机在我国的发展及技术经济分析[A];全国冶金自动化信息网2010年年会论文集[C];2010年
4 李金良;蒋廷军;樊孝忠;;沙沱水电站大倾角波状挡边带式输送机设计及计算[A];中国碾压混凝土筑坝技术(2010)[C];2010年
5 沈永才;蒋卫良;董红赞;;垂直提升波纹挡边带式输送机的研究及应用[A];煤矿机电一体化新技术及装备学术研讨论文专集[C];2003年
相关重要报纸文章 前1条
1 纪人强;耐高温挡边带世界性难题告破[N];中国化工报;2013年
相关硕士学位论文 前5条
1 陈亚军;重卡后桥减速器用圆锥滚子轴承大挡边结构优化[D];兰州理工大学;2016年
2 彭晓兰;波状挡边带式输送机快速设计及快速报价系统研究[D];南京理工大学;2005年
3 邢国玺;圆锥滚子轴承织构化内圈大挡边油膜润滑特性分析[D];河南科技大学;2014年
4 杨惠子;波状挡边带式输送机设计方法的若干问题研究[D];东北大学;2011年
5 邓晓骏;Maxoflex输送机输送能力分析及部件改进研究[D];上海交通大学;2012年
,本文编号:2244855
本文链接:https://www.wllwen.com/kejilunwen/qiche/2244855.html