基于混沌激光的一位物理随机数实时提取技术研究
发布时间:2018-02-07 13:09
本文关键词: 混沌激光 物理随机数 延时比较 脉冲调制 出处:《太原理工大学》2017年硕士论文 论文类型:学位论文
【摘要】:随机数被普遍应用于科学研究和日常生活中,例如模拟仿真、雷达测距、通信系统质量检测和博彩乐透等。特别在信息安全领域中,随机数常被用作密钥对明文信息进行加密。根据香农(Shannon)的“一次一密”理论,为实现绝对安全的保密通信就需要大量的、码率不低于通信速率的随机数,且需要保证随机数的不可预测性。利用一定的算法可以产生高速的“伪”随机数,但它的长度有限、可以被预测,无法保证所加密信息的绝对安全性。采用自然界随机现象作为物理熵源,可产生无限长度、不可预测的物理随机数(又称真随机数),但受限于传统物理熵源的带宽,码率为Mbit/s量级,距离现代通信速率有很大差距。近年来,采用宽带光子熵源——混沌激光产生高速物理随机数取得了突破性的进展,将随机数产生速率提升至几百Gbit/s、甚至Tbit/s的量级。然而,现有技术均使用电ADC对混沌信号进行采样和量化,继而进行后续处理。但是,电时钟的电子抖动限制了ADC的处理速度,并对ADC及后续处理器件(如异或门)之间的同步提出了严峻挑战。在国家自然科学基金科学仪器基础研究专款项目“高速全光真随机数发生器研制(项目编号:61227016)”资助下,本文主要研究利用混沌激光的在线实时产生高速物理随机数的方法。整个信号处理过程中不需要使用电时钟以及后续处理器件,解决了现有实时物理随机数提取技术中受限于电子时钟的电子抖动的问题,同时避免了需要精确调节量化阈值的技术局限。本文完成了以下的工作:1.通过介绍随机数在日常生活与科学研究中的应用,说明了研究随机数的重要意义;介绍目前物理随机数的发展现状,总结了常见的物理随机数产生方法,并且着重对利用混沌激光产生物理随机数的方法进行了对比分析。2.提出了一种基于混沌激光的在线实时产生高速物理随机数的方法。并以光反馈半导体激光器作为物理熵源,对所提方法进行了原理性的实验证明,在线实时产生了速率为7 Gbit/s的物理随机数,并且通过了随机数行业测试标准(NIST SP 800-22)。3.在本文所提的基于混沌激光的一位随机数提取方案基础上,制作了全光量化器样机。采用了延迟比较和脉冲调制的方法,将输入的幅度随机变化的光脉冲信号量化为光随机码信号,在输出端呈现为光脉冲信号的随机有无变化。其技术指标有:输出信号类型为光信号,工作波段为1550 nm,输出码型为归零码,码率为10 Gbit/s,消光比大于10 dB。4.对本文的工作内容进行了总结,并展望了未来可能的发展方向。
[Abstract]:Random numbers are widely used in scientific research and daily life, such as simulation, radar ranging, communication system quality detection, lottery, etc., especially in the field of information security, Random numbers are often used as keys to encrypt plaintext information. According to Shannon's "once at a time" theory, a large number of random numbers with a bit rate of no less than the rate of communication is required to achieve an absolute secure secure communication. And we need to ensure the unpredictability of random number. Using certain algorithm, we can produce high speed "pseudo" random number, but its length is limited, and it can be predicted. It is impossible to guarantee the absolute security of the encrypted information. The use of random phenomena in nature as physical entropy source can produce infinite length and unpredictable physical random numbers (also called true random numbers), but limited by the bandwidth of traditional physical entropy sources. The bit rate is of the order of Mbit/s, which is far from the modern communication rate. In recent years, the use of broadband photon entropy source-chaotic laser to generate high-speed physical random numbers has made a breakthrough. The random number generation rate is raised to the order of several hundred Gbit / s, or even Tbit/s. However, existing techniques enable electric ADC to sample and quantify chaotic signals and then process them later. However, the electronic jitter of electric clocks limits the processing speed of ADC. The synchronization between ADC and subsequent processing devices (such as XOR gate) is also challenged. Supported by the National Natural Science Foundation of China Science instrument Foundation project "High Speed All-optical True Random number Generator (Project No.: 61227016)", In this paper, the method of generating high speed physical random numbers in real time by using chaotic laser is studied. There is no need for electric clock and subsequent processing devices in the whole signal processing process. The problem of electronic jitter limited by electronic clock in existing physical random number extraction technology is solved. At the same time, it avoids the technical limitation that needs to adjust the quantization threshold accurately. This paper completes the following work: 1. By introducing the application of random numbers in daily life and scientific research, the importance of studying random numbers is explained. This paper introduces the development of physical random numbers and summarizes the common methods of generating physical random numbers. The method of generating physical random number by chaotic laser is compared and analyzed. 2. A method of real-time generation of high speed physical random number based on chaotic laser is proposed. The optical feedback semiconductor laser is used as the physical entropy source. The experimental results show that the physical random numbers with a rate of 7 Gbit/s are generated in real time. And the NIST SP 800-2200-220.3.Based on the scheme of extracting random number based on chaotic laser, a prototype of all-optical quantizer is made. The methods of delay comparison and pulse modulation are adopted. The input optical pulse signal with randomly varying amplitude is transformed into a light random code signal, and the output signal is presented as a random change of the optical pulse signal at the output end. The technical specifications are as follows: the output signal type is an optical signal, The working band is 1550 nm, the output code type is return-to-zero code, the code rate is 10 Gbit / s, the extinction ratio is more than 10 dB.4.The work content of this paper is summarized, and the possible future development is prospected.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP309
【参考文献】
相关期刊论文 前9条
1 张小龙;张氢;聂飞龙;秦仙蓉;孙远韬;;基于双ARM的减速器试验台多参数监测系统设计[J];仪表技术与传感器;2016年03期
2 江镭;李璞;张建忠;孙媛媛;胡兵;王云才;;基于太赫兹光非对称解复用器结构的低开关能量、高线性度全光采样门实验研究[J];物理学报;2015年15期
3 唐曦;吴加贵;夏光琼;吴正茂;;基于互注入半导体激光器的混沌输出产生17.5Gbit/s随机码[J];物理学报;2011年11期
4 张继兵;张建忠;杨毅彪;梁君生;王云才;;外腔半导体激光器随机数熵源的腔长分析[J];物理学报;2010年11期
5 邓焕;金荣华;陈俊;谢磊;曾晓洋;郭亚炜;;基于振荡器的高性能真随机数发生器[J];固体电子学研究与进展;2007年03期
6 吴双,梁林梅,李承祖,Surasak Chiangga;光量子随机数发生器[J];量子光学学报;2005年02期
7 俞俊,沈海斌,严晓浪;基于混沌的高速真随机数发生器的设计与实现[J];半导体学报;2004年08期
8 廖静,梁创,魏亚军,吴令安,潘少华,姚德成;基于光量子的真随机源[J];物理学报;2001年03期
9 ;高速数字物理噪声源芯片[J];中国科技成果;2008年05期
,本文编号:1494450
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1494450.html