3D打印气管补片生物力学性能和细胞相容性研究
本文选题:3D打印技术 切入点:气管补片 出处:《扬州大学》2017年硕士论文 论文类型:学位论文
【摘要】:气管切除并端端吻合是当前气管重建的金标准,但仅限于病变气管段不超过成人总气管长度1/2或小儿1/3。当病变气管超过最大限度时,进行气管重建有一定难度,因为气管不仅仅是一个简单的圆柱状通气管道,而是由复杂的多层结构组成。气管是由15-20个C形软骨构成,在气管内表面覆有纤毛上皮,外表面含有平滑肌、血管等结缔组织。气管软骨维持着气管圆柱状形态,防止气管塌陷;而气管内表面呼吸上皮中的纤毛对气管的清洁有着重要作用;气管软骨周围的结缔组织则保证了气管的曲、伸以及收缩、扩张等机械运动。因此,还没有办法完全重建这样复杂的多层结构以及完全模拟其功能。近年来,3D打印技术的发展为气管重建提供了新的思路。3D打印技术依靠计算机辅助成像,以广泛使用的生物材料为打印介质,能够快速、精确的复制和重建缺损组织或器官的复杂结构,因此在组织工程领域的应用获得广泛关注。骨髓间充质干细胞易分离培养,且具有多向分化潜能,是气管组织工程首选的种子细胞。本研究旨在以聚己内酯为材料,利用3D打印技术打印出气管补片,通过生物力学测试评估其生物力学性能并与骨髓间充质干细胞共培养评估其细胞相容性,从而寻求合适的组织工程气管支架材料。第一部分3D打印气管补片的制备与生物力学性能检测目的:利用3D打印技术将聚己内酯打印成气管补片并研究其生物力学性能。方法:1.3D打印气管补片的制备;2.扫描电子显微镜观察3D打印气管补片超微结构;3.3D打印气管补片的生物力学性能测试。结果:1.扫描电子显微镜图(SEM)观察到3D打印气管补片拥有适宜的孔径大小,孔径为 300-500μm;2.生物力学性能测试结果证实3D打印气管补片的最大应力及弹性模量明显优于离体新鲜气管,显示其具有良好的生物力学性能。结论:1.利用3D打印技术将聚己内酯制备成3D打印气管补片;2.3D打印气管补片具备合理的三维外形、适宜的孔径大小;3.3D打印气管补片具备良好的生物力学性能。第二部分 骨髓间充质干细胞体外培养与3D打印气管补片细胞相容性检测目的:1.骨髓间充质干细胞的体外培养;2.检测3D打印气管补片与骨髓间充质干细胞共培养的细胞相容性。方法:1.兔骨髓间充质干细胞的获取;2.兔骨髓间充质干细胞的培养;3.兔骨髓间充质干细胞的鉴定;4.3D打印气管补片与骨髓间充质干细胞共培养的细胞相容性检测。结果:1.通过全骨髓培养及贴壁纯化法获取的骨髓间充质干细胞,培养至第3代细胞成簇贴壁生长,呈梭形、多角形,具有多向分化潜能,可以分化为软骨细胞和脂肪细胞;2.与骨髓间充质干细胞共培养后进行细胞相容性检测结果显示3D打印气管补片具有良好的细胞相容性。结论:3D打印气管补片具备良好的细胞相容性,是一种具有开发潜力的生物材料,可以用于组织工程气管的体外构建。
[Abstract]:Trachea resection with end-to-end anastomosis is the golden standard for trachea reconstruction, but it is only limited to the total trachea length of 1/2 in adults or 1 / 3 in children. Because the trachea is not just a simple cylindrical tube, but it's made up of a complex, multilayered structure. The trachea is composed of 15-20 C-shaped cartilage, covered with cilia epithelium on the surface of the trachea, and smooth muscle on the outer surface. Connective tissue such as blood vessels. The trachea cartilage maintains the cylindrical shape of the trachea and prevents the collapse of the trachea; the cilia in the respiratory epithelium on the surface of the trachea play an important role in the cleaning of the trachea; the connective tissue around the cartilage of the trachea ensures the curvature of the trachea. Extension and mechanical movements such as contraction and expansion. There is no way to completely reconstruct such a complex multilayer structure and to completely simulate its functions. In recent years, the development of 3D printing technology has provided a new way of thinking for trachea reconstruction. 3D printing technology relies on computer-aided imaging. Using widely used biomaterials as printing media, the complex structures of defective tissues or organs can be reproduced and reconstructed quickly and accurately, so their applications in the field of tissue engineering have attracted wide attention. Bone marrow mesenchymal stem cells are easily isolated and cultured. The aim of this study was to use polycaprolactone as the material, and to print the trachea patch with 3D printing technology. Its biomechanical properties were evaluated by biomechanical tests and its cytocompatibility was evaluated by co-culture with bone marrow mesenchymal stem cells. In order to find suitable tissue engineering tracheal scaffold materials. Part I preparation of 3D printed trachea patch and biomechanical properties test objective: to print polycaprolactone into trachea patch by 3D printing technology and study its biological force. Methods: 1. Preparation of 3D printed trachea patch. Observation of ultrastructure of 3D printed trachea patch by scanning electron microscope. 3. Biomechanical properties of 3D printed trachea patch. Results: 1. Scanning electron microscopy (SEM) observation of 3D trachea patch. The printed trachea patch has an appropriate aperture, The maximum stress and elastic modulus of 3D printed trachea patch were obviously superior to those of fresh trachea in vitro, the results of biomechanical test showed that the maximum stress and elastic modulus of 3D printed tracheal patch were obviously superior to those of fresh trachea in vitro. Conclusion: 1. Using 3D printing technology to prepare 3D printed trachea patch 2.3D printed trachea patch has a reasonable 3D shape. Suitable aperture size 3. 3D printed trachea patch has good biomechanical properties. Part 2: bone marrow mesenchymal stem cells cultured in vitro and 3D printed trachea patch cytocompatibility test objective: 1. Bone marrow mesenchymal stem cells. The cytocompatibility of 3D printed tracheobronchial patch and bone marrow mesenchymal stem cells was examined in vitro. Methods: 1. Acquisition of rabbit bone marrow mesenchymal stem cells 2. Culture of rabbit bone marrow mesenchymal stem cells 3. Fine mesenchymal stem cells of rabbit bone marrow. Cytocompatibility of 3D printed tracheal patch and bone marrow mesenchymal stem cells. Results: 1. Bone marrow mesenchymal stem cells obtained by whole bone marrow culture and adherent purification. In the third generation, the cells grew in clusters, fusiform and polygonal, and had the potential of multidirectional differentiation. It can differentiate into chondrocytes and adipocytes. After co-culture with bone marrow mesenchymal stem cells, the results of cytocompatibility test show that 3D printed trachea patch has good cytocompatibility. Good cell compatibility, It is a potential biomaterial for in vitro construction of tissue engineering trachea.
【学位授予单位】:扬州大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.73;R318.08
【参考文献】
相关期刊论文 前10条
1 张卫东;章方彪;史宏灿;韩石;叶钢;孙飞;潘枢;刘星辰;;兔气管黏膜上皮细胞片的制备[J];中华实验外科杂志;2014年11期
2 孙飞;潘枢;史宏灿;章方彪;张卫东;叶刚;刘星辰;;去污剂-联合酶法行兔脱细胞组织工程气管制备及性能评价[J];中华胸心血管外科杂志;2014年01期
3 孙艳丽;韩宏光;黄带发;贺顺川;李予杰;;组织工程心脏瓣膜的构建:现状与前景[J];中国组织工程研究;2013年50期
4 Meimei Liu;Ning Liu;Ru Zang;Shang-Tian Yang;Yan Li;;Engineering stem cell niches in bioreactors[J];World Journal of Stem Cells;2013年04期
5 王月圆;杨萍;;3D打印技术及其发展趋势[J];印刷杂志;2013年04期
6 Giorgia Totonelli;Panagiotis Maghsoudlou;Jonathan M Fishman;Giuseppe Orlando;Tahera Ansari;Paul Sibbons;Martin A Birchall;Agostino Pierro;Simon Eaton;Paolo De Coppi;;Esophageal tissue engineering:A new approach for esophageal replacement[J];World Journal of Gastroenterology;2012年47期
7 刘智任;陈冬磊;;聚己内酯在组织工程中的应用进展[J];现代生物医学进展;2012年16期
8 赵铭;郑启新;王金光;王运涛;郝杰;;PLGA仿生矿化对骨髓基质干细胞黏附率的影响[J];国际生物医学工程杂志;2006年01期
9 何建行,梁兆煜,杨运有,韦兵,殷伟强,温晓晖,曾仑,钟南山;同种异体气管移植一例[J];中华外科杂志;2000年08期
10 张卫东;史宏灿;章方彪;谭荣邦;叶钢;李广宇;;兔骨髓间充质干细胞体外培养方法的比较[J];中华实验外科杂志;2013年07期
,本文编号:1583235
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/1583235.html