当前位置:主页 > 科技论文 > 软件论文 >

基于深度学习的中文地名识别研究

发布时间:2018-11-03 08:08
【摘要】:基于深度学习的循环神经网络方法,面向中文字和词的特点,重新定义了地名标注的输入和输出,提出了汉字级别的循环网络标注模型.以词级别的循环神经网络方法为基准,本文提出的字级别模型在中文地名识别的准确率、召回率和F值均有明显提高,其中F值提高了2.88%.在包含罕见词时提高更为明显,F值提高了26.41%.
[Abstract]:Based on the circular neural network method of deep learning and the characteristics of Chinese characters and words, the input and output of place names are redefined, and a Chinese character level circular network annotation model is proposed. Based on the word-level cyclic neural network method, the accuracy, recall rate and F value of the word-level model in Chinese geographical names recognition are obviously improved, in which the F value is increased by 2.88. The value of F was increased by 26.41 when the rare words were included.
【作者单位】: 南京理工大学经济管理学院;计算机软件新技术国家重点实验室(南京大学);
【基金】:国家自然科学基金资助项目(71503124,71303120) 江苏省社会科学基金资助项目(15TQC03)
【分类号】:TP18;TP391.1


本文编号:2307210

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2307210.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户aa6d8***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com