当前位置:主页 > 科技论文 > 软件论文 >

基于Android和云平台的日常血压监控预警系统的设计与实现

发布时间:2018-12-10 11:19
【摘要】:近年来,随着我国老龄化的加速发展,高血压的发病率日益升高。高血压是多种疾病的诱发因素,做好对高血压患者体征数据的采集和分析,对于预防高血压及其并发症有着重要的作用。如何采集患者实时的体征数据,存储这些数据,并根据数据分析与预测患者的血压趋势等问题亟需应对和解决。云计算、物联网和“互联网+”的飞速发展,4G和无线网络的快速覆盖,Android和可穿戴智能设备的快速普及,都为解决上述问题提供了便利条件。基于Android的血压数据采集系统围绕数据采集、分析与预警,从数据采集、数据存储、数据分析三个层次来解决上述问题。该系统实现了数据采集内容及时准确,传输渠道通畅,分析预警快速有效,模块扩展方便易用。论文的研究工作围绕着数据采集、数据存储和数据算法三方面展开。数据采集方面,对蓝牙血压计的协议进行了分析,基于Android平台设计异构蓝牙数据采集系统,支持多种蓝牙协议的解析,通过抽象上层的工作流程,使用策略模式设计了易于添加蓝牙设备的协议解析方案。数据存储方面,Android端通过网络将数据上传到云平台,设计了使用MongoDB建立血压存储数据库集群的方案,实现了服务器资源的横向扩展。数据算法方面,根据高血压数据的特点,将时间序列预测法应用到血压数据的预测上,使用向量自回归算法设计了预测方案和模型,预测结果较为准确。最后,完成了系统功能性界面的设计实现,实现了历史记录和预警信息的可视化,并进行了整个系统的联调测试。本论文将Android、蓝牙和云平台相结合,实现了血压数据采集、存储、分析的流程化操作。采集系统支持多种异构蓝牙设备,存储系统具有较高的扩展性,预警系统可以较好的分析患者的疾病风险。本系统的实现,对于医疗大数据的采集和分析有一定借鉴意义。
[Abstract]:In recent years, with the accelerated development of aging in China, the incidence of hypertension is increasing. Hypertension is the inducing factor of many diseases. It is very important to collect and analyze the data of physical signs of hypertension patients for the prevention of hypertension and its complications. How to collect and store the data of patients' physical signs, and how to analyze and predict the trend of patients' blood pressure according to the data, and so on, should be dealt with and solved urgently. The rapid development of cloud computing, the Internet of things and the Internet of things, the rapid coverage of 4G and wireless networks, and the rapid spread of Android and wearable smart devices all provide a convenient solution to these problems. The blood pressure data acquisition system based on Android solves the above problems from three levels: data acquisition, analysis and early warning, data acquisition, data storage and data analysis. The system realizes timely and accurate data collection, smooth transmission channel, fast and effective analysis and early warning, and easy to use. This paper focuses on data acquisition, data storage and data algorithm. In the aspect of data acquisition, the protocol of bluetooth sphygmomanometer is analyzed. The heterogeneous Bluetooth data acquisition system is designed based on Android platform, which supports the analysis of various Bluetooth protocols. A protocol resolution scheme which is easy to add Bluetooth device is designed by using policy mode. In the aspect of data storage, the Android terminal uploads the data to the cloud platform through the network, designs the scheme of establishing the blood pressure storage database cluster with MongoDB, and realizes the lateral expansion of the server resources. In terms of data algorithm, according to the characteristics of hypertension data, the time series prediction method is applied to the prediction of blood pressure data. The prediction scheme and model are designed by using vector autoregressive algorithm, and the prediction results are more accurate. Finally, the design and implementation of the functional interface of the system is completed, and the visualization of historical records and warning information is realized. In this paper, Android, Bluetooth and cloud platform are combined to realize blood pressure data acquisition, storage and analysis. The acquisition system supports a variety of heterogeneous Bluetooth devices, and the storage system is highly scalable, and the early warning system can better analyze the disease risk of patients. The realization of this system has certain reference significance for the collection and analysis of medical big data.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP277;TP393.09;TP316

【参考文献】

相关期刊论文 前10条

1 陈伟伟;高润霖;刘力生;朱曼璐;王文;王拥军;吴兆苏;李惠君;郑哲;蒋立新;胡盛寿;;《中国心血管病报告2014》概要[J];中国循环杂志;2015年07期

2 颜延;秦兴彬;樊建平;王磊;;医疗健康大数据研究综述[J];科研信息化技术与应用;2014年06期

3 张松;田林亚;;时间序列分析在地铁沉降监测中的应用[J];测绘工程;2014年10期

4 周炜;;云环境下提升MongoDB自动分片性能研究[J];科技创新导报;2013年29期

5 邓志飞;应良佳;王军威;;基于IODA算法MongoDB负载均衡的改进[J];现代电信科技;2013年07期

6 马亮亮;;基于PCA-ARIMA模型的高血压发病率预测[J];河北北方学院学报(自然科学版);2013年02期

7 徐金苟;;低能耗蓝牙4.0协议原理与实现方法[J];微型电脑应用;2012年10期

8 刘璐;薛秀芹;罗先露;金凡;孙俊;;无线体域网的体系结构及面临的挑战[J];电脑知识与技术;2012年29期

9 袁锋;陈守强;;高效挖掘高血压医案关联规则的模型构建[J];计算机工程与应用;2011年36期

10 吕明育;李小勇;;NoSQL数据库与关系数据库的比较分析[J];微型电脑应用;2011年10期

相关硕士学位论文 前5条

1 杨泽军;基于Android平台的健康感知信息采传系统研究与实现[D];山东师范大学;2013年

2 沈姝;NoSQL数据库技术及其应用研究[D];南京信息工程大学;2012年

3 刘顺;基于WeHealth的物联网通信协议研究与优化[D];北京邮电大学;2012年

4 王海波;云计算中数据库的关键问题研究与实现[D];吉林大学;2011年

5 田立明;基于Web的健康预测服务系统[D];大连理工大学;2006年



本文编号:2370480

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2370480.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户9b6e2***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com