马铃薯红外光谱数据库系统关键算法研究
[Abstract]:Infrared spectroscopy has been widely used in many fields, such as chemical analysis, material variety prediction, quality identification and so on, because of its high stability, no need for chemical treatment, rich atlas information and so on. Infrared spectrum database system can help to establish stable and fast sample type prediction model, quality analysis model, feature analysis model and so on, so that researchers can master the sample information more comprehensively. In infrared spectral database system, accurate and efficient spectral classification and matching algorithm is the key to the effective operation of the whole system. Therefore, the study of spectral classification and matching algorithm can promote the promotion of infrared spectral database system. Most of the existing spectral matching algorithms measure the similarity between spectra from the aspect of Euclidean distance measure or curve similarity, but can not synthesize the two factors, and with the increase of the total number of category centers, the accuracy of the existing algorithms can no longer meet the requirements of spectral database system. Therefore, taking potato as the research object, the key algorithm of infrared spectrum database system is studied in this paper. Firstly, aiming at the fact that the traditional spectral feature peak recognition algorithm needs to scan the spectrum many times, and the recognition ability of dwarf peak and shoulder peak is weak, a feature peak recognition algorithm based on dynamic peak shape factor is proposed, which only needs one scan. The experimental results show that the algorithm can accurately identify all the effective characteristic peaks in the spectral curve, and also has a certain ability to recognize shoulder peaks and dwarf peaks. Secondly, according to the concepts of hamming distance and spectral difference curve, a dynamic spectral distance algorithm is proposed. The algorithm takes into account the waveform and absolute difference factors of spectral curve, and realizes the accurate identification of different varieties of potato. The experimental results show that the average accuracy of the algorithm is 92.85%, which is higher than the traditional Euclidean distance, spectral angle and so on. Finally, in order to solve the problem that the accuracy of spectral classification algorithm decreases when the total number of category centers increases, a spectral classification algorithm based on virtual competitive self-organizing self-growing feature mapping neural network VC-TGSOM is proposed. The experimental results show that the accuracy of VC-TGSOM network does not decrease with the increase of the total number of category centers.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:S532;TP311.13
【参考文献】
相关期刊论文 前10条
1 卢肖平;;马铃薯主粮化战略的意义、瓶颈与政策建议[J];华中农业大学学报(社会科学版);2015年03期
2 郭志明;黄文倩;彭彦昆;王秀;汤修映;;自适应蚁群优化算法的近红外光谱特征波长选择方法[J];分析化学;2014年04期
3 代芬;Mads Sylvest Bergholt;Arnold Julian Vinoj Benjamin;洪添胜;Zhiwei Huang;;近红外激发荧光光谱与拉曼光谱快速鉴别马铃薯品种[J];光谱学与光谱分析;2014年03期
4 王艳华;;SOM研究的若干新进展[J];福建电脑;2013年11期
5 张其林;王先培;赵宇;屈萌;杜双育;;基于相似系统理论的红外光谱谱图比对方法[J];光谱实验室;2013年06期
6 李永祥;李美龄;李贞景;张晓清;王斌;张玄和;罗成;;源于不同数据库的食源性有机分子红外光谱比较[J];农业工程;2013年06期
7 薛云伟;;朗伯-比尔定律和光[J];产业与科技论坛;2013年13期
8 樊劲辉;陆薇;李争;;一种改进的SOFM聚类算法研究[J];河北科技大学学报;2012年06期
9 蔡天净;唐瀚;;Savitzky-Golay平滑滤波器的最小二乘拟合原理综述[J];数字通信;2011年01期
10 张军;姜黎;陈哲;余谦;梁静秋;王京华;;基于近红外光谱技术成品汽油分类方法的研究[J];光谱学与光谱分析;2010年10期
相关会议论文 前1条
1 刘伟;徐水平;袁军;董少敏;;基于差曲线信息熵的光谱相似性测度改进方法[A];第二届“测绘科学前沿技术论坛”论文精选[C];2010年
相关博士学位论文 前2条
1 周万怀;苹果近红外光谱数据库系统关键算法研究及原型系统开发[D];浙江大学;2014年
2 雷萌;基于机器学习的煤质近红外光谱分析[D];中国矿业大学;2013年
相关硕士学位论文 前4条
1 孙鸿烨;近红外光谱建模中的变量选择方法研究[D];长春理工大学;2014年
2 李渌洁;近红外光谱的小波域分析及特征提取方法的研究[D];长春理工大学;2012年
3 王静;红外光谱数据库系统研究[D];华东师范大学;2008年
4 华国栋;常用饮片近红外光谱数据库建立及识别研究[D];北京中医药大学;2007年
,本文编号:2498431
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2498431.html