当前位置:主页 > 科技论文 > 软件论文 >

基于残差矩阵估计的稀疏表示目标跟踪算法

发布时间:2017-09-04 13:48

  本文关键词:基于残差矩阵估计的稀疏表示目标跟踪算法


  更多相关文章: 稀疏表示 正则化 残差矩阵 目标跟踪


【摘要】:基于稀疏表示的目标跟踪算法多数利用稀疏系数计算目标位置信息,而忽略了稀疏表示过程中的残差所包含的信息.因此,本文设计了一种基于残差矩阵估计的跟踪模型.该模型在粒子滤波的框架下利用L_1范数分别约束稀疏表示系数与残差矩阵,并且利用L_2范数建立残差矩阵与观测模型之间的联系.本文给出了相应求解模型的表示系数与残差矩阵的迭代算法,并利用残差矩阵更新模板字典.相比应用稀疏系数的跟踪算法,本文算法考虑了残差矩阵对跟踪结果的影响,使得算法对于候选目标的评估更加精确,同时在模板更新部分引入残差矩阵,使得字典能够更好地描述目标的变化.实验数据表明,本文算法优于现今主流算法.
【作者单位】: 中国科学院长春光学精密机械与物理研究所;中国科学院大学;
【关键词】稀疏表示 正则化 残差矩阵 目标跟踪
【基金】:国家自然科学基金(批准号:61401425) 吉林省科技发展计划青年科研基金(批准号:20150520057JH)资助的课题~~
【分类号】:TP391.41
【正文快照】: 1引言 目标跟踪技术一直是计算机视觉领域的研究热点之一[1],其研究的主要目的是设计可应用于现实场景,有效克服各种跟踪障碍的实时跟踪算法.目前,目标跟踪技术已经取得了长足的进步[2 16],且目标跟踪技术已在多个领域被广泛地应用.但仍然很难有效处理跟踪过程中遇到的问题,

【相似文献】

中国期刊全文数据库 前10条

1 李映;张艳宁;许星;;基于信号稀疏表示的形态成分分析:进展和展望[J];电子学报;2009年01期

2 赵瑞珍;王飞;罗阿理;张彦霞;;基于稀疏表示的谱线自动提取方法[J];光谱学与光谱分析;2009年07期

3 杨蜀秦;宁纪锋;何东健;;基于稀疏表示的大米品种识别[J];农业工程学报;2011年03期

4 史加荣;杨威;魏宗田;;基于非负稀疏表示的人脸识别[J];计算机工程与设计;2012年05期

5 高志荣;熊承义;笪邦友;;改进的基于残差加权的稀疏表示人脸识别[J];中南民族大学学报(自然科学版);2012年03期

6 朱杰;杨万扣;唐振民;;基于字典学习的核稀疏表示人脸识别方法[J];模式识别与人工智能;2012年05期

7 耿耀君;张军英;袁细国;;一种基于稀疏表示系数的特征相关性测度[J];模式识别与人工智能;2013年01期

8 张疆勤;廖海斌;李原;;基于因子分析与稀疏表示的多姿态人脸识别[J];计算机工程与应用;2013年05期

9 李正周;王会改;刘梅;丁浩;金钢;;基于形态成分稀疏表示的红外小弱目标检测[J];弹箭与制导学报;2013年04期

10 胡正平;赵淑欢;李静;;基于块稀疏递推残差分析的稀疏表示遮挡鲁棒识别算法研究[J];模式识别与人工智能;2014年01期

中国重要会议论文全文数据库 前3条

1 何爱香;刘玉春;魏广芬;;基于稀疏表示的煤矸界面识别研究[A];虚拟运营与云计算——第十八届全国青年通信学术年会论文集(上册)[C];2013年

2 樊亚翔;孙浩;周石琳;邹焕新;;基于元样本稀疏表示的多视角目标识别[A];2013年中国智能自动化学术会议论文集(第五分册)[C];2013年

3 葛凤翔;任岁玲;郭鑫;郭良浩;孙波;;微弱信号处理及其研究进展[A];中国声学学会水声学分会2013年全国水声学学术会议论文集[C];2013年

中国博士学位论文全文数据库 前10条

1 李进明;基于稀疏表示的图像超分辨率重建方法研究[D];重庆大学;2015年

2 王亚宁;基于信号稀疏表示的电机故障诊断研究[D];河北工业大学;2014年

3 姚明海;视频异常事件检测与认证方法研究[D];东北师范大学;2015年

4 黄国华;蛋白质翻译后修饰位点与药物适应症预测方法研究[D];上海大学;2015年

5 王瑾;基于稀疏表示的数据收集、复原与压缩研究[D];北京工业大学;2015年

6 王文卿;基于融合框架与稀疏表示的遥感影像锐化[D];西安电子科技大学;2015年

7 解虎;高维小样本阵列自适应信号处理方法研究[D];西安电子科技大学;2015年

8 秦振涛;基于稀疏表示及字典学习遥感图像处理关键技术研究[D];成都理工大学;2015年

9 薛明;基于稀疏表示的在线目标跟踪研究[D];上海交通大学;2014年

10 孙乐;空谱联合先验的高光谱图像解混与分类方法[D];南京理工大学;2014年

中国硕士学位论文全文数据库 前10条

1 王道文;基于稀疏表示的目标跟踪算法研究[D];华南理工大学;2015年

2 李哲;基于稀疏表示和LS-SVM的心电信号分类[D];河北大学;2015年

3 孙雪青;Shearlet变换和稀疏表示相结合的甲状腺结节图像融合[D];河北大学;2015年

4 吴丽璇;基于稀疏表示的微聚焦X射线图像去噪方法[D];华南理工大学;2015年

5 赵孝磊;基于图像分块稀疏表示的人脸识别算法研究[D];南京信息工程大学;2015年

6 黄志明;基于辨别式稀疏字典学习的视觉追踪算法研究[D];华南理工大学;2015年

7 张铃华;非约束环境下的稀疏表示人脸识别算法研究[D];南京信息工程大学;2015年

8 贺妍斐;基于稀疏表示与自适应倒易晶胞的遥感图像复原方法研究[D];南京信息工程大学;2015年

9 杨烁;电能质量扰动信号的稀疏表示/压缩采样研究[D];西南交通大学;2015年

10 应艳丽;基于低秩稀疏表示的目标跟踪算法研究[D];西南交通大学;2015年



本文编号:791914

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/791914.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户dee54***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com