当前位置:主页 > 科技论文 > 施工技术论文 >

大型动力离心机设计理论与关键技术研究

发布时间:2018-12-15 09:52
【摘要】:按照装备振动台与否,土工离心机大致可分为静力试验离心机和动力试验离心机(也称离心机振动台)两大类,本文将后者简称为动力离心机。动力离心机(Dynamic Centrifuge)是目前国际公认研究岩土地震工程和土动力学最先进、最有效的科学试验平台,而我国仅拥有数台辅助建设的中小型动力离心机设备,且主要技术指标与国际存在很大差距。国内大型动力离心机则为空白,这与我国辽阔的地域、复杂的工程地质条件、高速发展的经济建设以及严峻的地震形势十分不相称。大型动力离心机系统十分复杂而庞大,涉及技术多,成功经验少,建设过程具有问题多、难度大、历时长、花费高等特点。全球仅有两台大型动力离心机,且自建设后一直不断改进,其中UC Davis大型动力离心机建设周期累计长达16年。国际当前动力离心机研制技术和试验技术均不成熟,尚处于初级发展阶段,而国内对大型动力离心机的认识仅限于指标和功能的了解,缺乏系统的关键技术和设计理论研究。 本文以国内对大型动力离心机的迫切需要为背景,以工程力学研究所DCIEM-40-300大型动力离心机建设为蓝本,就大型动力离心机的设计理论和关键技术展开研究,确定关键技术和设计难点,剖析主要难点和关键问题,对其中关键问题进行系统地分析、建模、推导、计算和验证。完成的主要工作和成果如下: 1.详细总结了国内外动力离心机及土工离心机发展现状,提出了两者性能评价指标差异和规模划分标准;阐述了动力离心机研制技术和试验技术当前研究进展,指出了国内动力离心机发展的重点方向与趋势;提出了中国地震局工程力学研究所DCIEM-40-300大型动力离心机设计指标,阐明了其总体规模和功能特点。 2.密切跟踪国际相关技术最新发展,剖析了国际上仅有的UC Davis和PWRI两台大型动力离心机设备建设经验、结构组成和设计方法;分析了大型动力离心机系统各部分的机械结构、运动约束及功能条件的内在影响和制约;确定了四个子系统的关键技术、设计重点和难点,指出了离心振动台是整个系统的研制核心。 3.针对大型动力离心机的研制核心,深入研究高振动容量和高振动负载下离心振动台设计的新问题和主要难点,引进融合国际最新技术,提出了大型离心振动台整体和主要部件的总设计新方法与基本理论;以DCIEM-40-300大型动力离心机设计指标为样本,提出了设计思路与基本方法,给出了主要部件结构、参数确定和元件选型,计算了负载特性及安全校核;建立和求解了等效吊篮质量计算模型和公式。 4.以大型离心振动台总体设计方法为基础,分等级建立和求解了三种离心振动台动力分析模型和传递函数,给出了三类不同设计条件下离心振动台液压机构基本动力特性;以DCIEM-40-300设计指标为样本,利用求解出的传递函数,分析了吊篮主要参数对离心振动台动力性能的影响规律,提出了改进离心振动台动力性能的设计方法。 5.建立了离心振动台与吊篮伺服控制动力仿真模型,研究了离心振动台三参数反馈//输入伺服控制设计方法,提出了最佳参数求解标准;给出了动力离心试验功能要求下,现有伺服控制理论拓展液压系统频宽和提高稳定性的最大能力,探讨了大型离心振动台电液伺服控制系统设计的优化方法。 6.研究了试验数据采集系统环境条件、功能要求及传感器设计问题,提出了一种多信号类型、不等数量线制、多通道复用式的大型动力离心试验数据采集系统设计方法;研究了理想条件下试验模型箱的设计要求,给出了多种结构型式,提出了一套柔性剪切模型箱设计新方法和基本理论;提出了试验图像采集系统基本设计要求和总体设计方法。 7.研究了设备总体结构布局方法和土建设计关键问题;分析了设备基础荷载条件和发生方式,建立了大型动力离心机基础振动分析模型和计算方法,提出了DCIEM-40-300基础设计方案;建立了风阻功率的计算模型,推导出了其解析计算公式,提出了便于工程应用的简化计算方法,解释了主机室空气运动的内在机理。
[Abstract]:According to the equipment vibration table or not, the geotechnical centrifuge can be divided into two categories: static test centrifuge and dynamic test centrifuge (also known as centrifuge vibration table). The latter is referred to as the power centrifuge. Dynamic Centrifuge is the most advanced and most effective scientific test platform for geotechnical engineering and soil dynamics at present, and China only has a number of small and medium-sized dynamic centrifuge equipment with auxiliary construction, and the main technical index and international have a great gap. The domestic large-scale dynamic centrifuge is blank, which is not commensurate with the vast territory of China, the complex engineering geological conditions, the economic construction of high-speed development and the severe earthquake situation. The large-scale dynamic centrifuge system is very complex and large, involving more technology and less successful experience, and the construction process has the characteristics of many problems, great difficulty, long duration, high cost and the like. There are only two large-scale power centrifuges in the world, and it has been continuously improved since the construction, in which the construction period of the UC Davis large-scale power centrifuge is up to 16 years. The development technology and test technology of the international current dynamic centrifuge are not mature and are still in the primary stage of development, and the understanding of the large-scale dynamic centrifuge in China is limited to the understanding of the index and function, the lack of the key technology of the system and the research of the design theory. In this paper, based on the urgent need of large-scale dynamic centrifuge in China, the research on the design theory and key technology of the large-scale dynamic centrifuge is carried out by the DCIEM-40-300 large-scale dynamic centrifuge of the Institute of Engineering Mechanics, and the key technology and design difficulty are determined. The key problems and key problems are analyzed, and the key problems are analyzed, modeled, derived, calculated and verified. A. The main work and results of the completion, such as The development of the dynamic centrifuge and the geotechnical centrifuge at home and abroad is summarized in detail. The difference of the performance evaluation index and the scale division standard are put forward, and the current research and development technology and test technology of the dynamic centrifuge are described. The main direction and trend of the development of domestic dynamic centrifuge are pointed out, and the design index of DCIEM-40-300 large-scale dynamic centrifuge of the Institute of Engineering and Mechanics of China Seismological Bureau is put forward, and its overall scale and work are set out. Features. 2. closely follow the latest development of relevant international technology, and analyze the construction experience, structure and design method of only two large-scale dynamic centrifuge equipment of UC Davis and PWRI in the world, and analyze the parts of large-scale power centrifuge system The internal influence and restriction of the mechanical structure, the movement restriction and the functional condition of the four subsystems are determined, the key technology, the design focus and the difficulty of the four subsystems are determined, and it is pointed out that the centrifugal vibration table is the whole system Based on the research and development of large-scale dynamic centrifuge, the new problems and main difficulties in the design of the centrifugal vibration table under high vibration capacity and high vibration load are studied. Based on the latest technology of the international, a new method and basic theory of the general design of the whole and main parts of the large-scale centrifugal vibration table are put forward, and the design idea and the basic method are put forward based on the design index of the DCIEM-40-300 large-scale dynamic centrifuge, and the structure and parameters of the main components are given. The load characteristic and safety check are calculated and the equivalent hanging basket mass is established and solved. Calculation model and formula. 4. Based on the general design method of large-scale centrifugal vibration table, three kinds of centrifugal vibration table dynamic analysis model and transfer function are established and solved, and the basic dynamic characteristics of the hydraulic mechanism of the centrifugal vibrating table under three different design conditions are given. 00. The influence of the main parameters of the gondola on the dynamic performance of the centrifugal vibration table was analyzed by using the calculated transfer function. The improved centrifugal vibration table was put forward. The design method of dynamic performance is established. 5. The simulation model of the centrifugal vibration table and the servo control of the gondola is established, and the design method of the three-parameter feedback and/ or input servo control of the centrifugal vibration table is studied, and the best parameter solving standard is put forward. Under the function of dynamic centrifugal test, the existing servo control theory expands the maximum capacity of the hydraulic system and improves the stability, and discusses the electro-hydraulic servo of the large-scale centrifugal vibration table. The optimization method of the control system design. 6. The environmental conditions, functional requirements and sensor design problems of the test data acquisition system are studied. A multi-signal type, unequal number line system and a multi-channel multiplex type large-scale power separation system are proposed. The design method of the data acquisition system of the heart test is studied, the design requirements of the test model box under the ideal conditions are studied, and a set of new methods and basic theories for the design of a flexible shear model box are put forward. The test image acquisition system is put forward. The basic design requirements and the overall design method. 7. The overall structure layout method of the equipment and the key problems of the civil engineering design are studied, the basic load condition and the method of the equipment are analyzed, the basic vibration analysis model and the calculation method of the large-scale dynamic centrifuge are established, and the basic design of the DCEM-40-300 is put forward. The calculation model of wind resistance power is established, its analytical formula is derived, and the simplified calculation method for engineering application is put forward.
【学位授予单位】:中国地震局工程力学研究所
【学位级别】:博士
【学位授予年份】:2013
【分类号】:TU415

【参考文献】

相关期刊论文 前10条

1 林明,王新伦,冯晓军,赵玉虎,冯英伟;60-gt土工离心机电气系统设计[J];兵工自动化;2004年01期

2 刘晶波;刘祥庆;王宗纲;;离心机振动台试验叠环式模型箱边界效应[J];北京工业大学学报;2008年09期

3 侯瑜京;LXJ-4-450 土工离心机在岩土工程中的应用[J];北京水利;1998年05期

4 王永志;袁晓铭;孙锐;;CSIEM-40-300大型振动离心机的设想与关键技术[J];长江科学院院报;2012年04期

5 包承纲,饶锡保;土工离心模型的试验原理[J];长江科学院院报;1998年02期

6 吴建平;顾尧章;余祖国;;砂雨法成型中影响试样密度的因素[J];大坝观测与土工测试;1990年03期

7 谢欣;;大型土工离心机数据采集与监测系统研制[J];大坝观测与土工测试;1992年04期

8 白冰,周健;土工离心模型试验技术的一些进展[J];大坝观测与土工测试;2001年01期

9 苏栋;李相菘;;砂土自由场地震响应的离心机试验研究[J];地震工程与工程振动;2006年02期

10 郭迅;;地震工程试验联网最新进展[J];地震工程与工程振动;2006年04期

相关博士学位论文 前1条

1 关广丰;液压驱动六自由度振动试验系统控制策略研究[D];哈尔滨工业大学;2007年

相关硕士学位论文 前2条

1 马军辉;吊篮刚度对离心机振动台控制特性的影响[D];哈尔滨工业大学;2011年

2 王永志;振动离心机系统工作原理与初步设计[D];中国地震局工程力学研究所;2010年



本文编号:2380441

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/sgjslw/2380441.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5f051***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com