干旱胁迫下小麦(Triticumaestivum L.)幼苗中ABA 和IAA的免疫定位及定量分

发布时间:2017-01-19 13:21

  本文关键词:增强UV-B辐射和干旱对不同品种春小麦生长、产量和生物量的影响,由笔耕文化传播整理发布。


[11] 宋怀宇, 赵启韬, 王万忠. 激光共聚焦显微镜对肝组织TGF-β1的荧光定量分析. 山东医药, 2008, 48(9): 38-39.Song H Y, Zhao Q T, Wang W Z. Quantitative analysis of transform growth factor-β1 expression in liver tissue with confocal laser microscopy. Shandong Medical Journal, 2008, 48(9): 38-39. (in Chinese)

[29] 李岩, 潘海春, 李德全. 土壤干旱条件下玉米叶片内源激素含量及光合作用的变化. 植物生理学报, 2000, 26(4): 301-305.Li Y, Pan H C, Li D Q. Changes in contents of endogenous phytohormones and photosynthesis in leaves of maize (Zea mays L.) in drying soil. Acta Phytophysiologica Sinica, 2000, 26(4): 301-305. (in Chinese)

[15] Campalans A, Messeguer R, Goday A, Pagès M. Plant responses to drought, from ABA signal transduction events to the action of the induced proteins. Plant Physiology and Biochemistry, 1999, 37: 327-340.

[1] 何斌, 武建军, 吕爱锋. 农业干旱风险研究进展. 地理科学进展, 2010, 29(5): 557-564.He B, Wu J J, Lv A F. New advances in agricultural drought risk study. Progress in Geography, 2010, 29(5): 557-564. (in Chinese)

[12] 张莹, 陈建伟, 徐建亚, 李海涛. 明党参中香豆素成分的组织定位,分布和荧光相对定量研究. 时珍国医国药, 2011, 22(3): 625-627.Zhang Y, Chen J W, Xu J Y, Li H T. Tissue localization, distribution and fluorescence relative quantitative of coumarins in changium smyrnioides wolff. Lishizhen Medicine and Materia Medica Research, 2011, 22(3): 625-627. (in Chinese)

[5] Bartels D, Sunkar R. Drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 2005, 24: 23-58.

[30] Zhao M R, Han Y Y, Feng Y N, Li F, Wang W. Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat. Plant Cell Reports, 2012, 31: 671-685.

[16] Dodd I C, Egea G, Watts C W, Whalley W R. Root water potential integrates discrete soil physical properties to influence ABA signalling during partial rootzone drying. Journal of Experimental Botany, 2010, 61: 3543-3551.

[2] 陈怀亮, 张红卫, 刘荣花, 余卫东. 中国农业干旱的监测,预警和灾损评估. 科技导报, 2009, 27(11): 82-92.Chen H L, Zhang H W, Liu R H, Yu W D. Agricultural drought monitoring forecasting and loss assessment in China. Science & Technology Review, 2009, 27(11): 82-92. (in Chinese)

[13] Deng A, Tan W, He S, Liu W, Nan T, Li Z, Wang B, Li Q X. Monoclonal antibody-based enzyme linked immunosorbent assay for the analysis of jasmonates in plants. Journal of Integrative Plant Biology, 2008, 50: 1046-1052.

[6] Huang G T, Ma S L, Bai L P, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo Z F. Signal transduction during cold, salt, and drought stresses in plants. Molecular Biology Reports, 2012, 39: 969-987.

[14] 高天鹏, 安黎哲, 冯虎元. 增强UV-B辐射和干旱对不同品种春小麦生长、产量和生物量的影响. 中国农业科学, 2009, 42(6): 1933-1940.Gao T P, An L Z, Feng H Y. Effects of enhanced UV-B irradiance and drought stress on the growth, production, and biomass of spring wheat. Scientia Agricultura Sinica, 2009, 42(6): 1933-1940. (in Chinese)

[17] 贾文锁, 王学臣, 张蜀秋, 娄成后. 水分胁迫下 ABA 由蚕豆根向地上部的运输及其在叶片组织中的分布. 植物生理学报, 1996, 22(4): 363-367.Jia W S, Wang X C, Zhang S Q, Lou C H. The transport of aba from root to shoot and its distribution in response to water stress in Vicia faba L. Plant Physiology Journal, 1996, 22(4): 363-367. (in Chinese)

[3] Chaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought-from genes to the whole plant. Functional Plant Biology, 2003, 30(3): 239-264.

[15] Campalans A, Messeguer R, Goday A, Pagès M. Plant responses to drought, from ABA signal transduction events to the action of the induced proteins. Plant Physiology and Biochemistry, 1999, 37: 327-340.

[7] Peleg Z, Blumwald E. Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology, 2011, 14: 290-295.

[18] Liang J, Zhang J, Wong M H. How do roots control xylem sap ABA concentration in response to soil drying? Plant and Cell Physiology, 1997, 38: 10-16.

[4] Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S M A. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Agriculture, 2009, 29(1): 153-188.

[16] Dodd I C, Egea G, Watts C W, Whalley W R. Root water potential integrates discrete soil physical properties to influence ABA signalling during partial rootzone drying. Journal of Experimental Botany, 2010, 61: 3543-3551.

[17] 贾文锁, 王学臣, 张蜀秋, 娄成后. 水分胁迫下 ABA 由蚕豆根向地上部的运输及其在叶片组织中的分布. 植物生理学报, 1996, 22(4): 363-367.Jia W S, Wang X C, Zhang S Q, Lou C H. The transport of aba from root to shoot and its distribution in response to water stress in Vicia faba L. Plant Physiology Journal, 1996, 22(4): 363-367. (in Chinese)

[19] Sauter A, Dietz K J, Hartung W. A possible stress physiological role of abscisic acid conjugates in root-to-shoot signalling. Plant, Cell & Environment, 2002, 25: 223-228.

[5] Bartels D, Sunkar R. Drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 2005, 24: 23-58.

[18] Liang J, Zhang J, Wong M H. How do roots control xylem sap ABA concentration in response to soil drying? Plant and Cell Physiology, 1997, 38: 10-16.

[8] Pustovoitova T N, Zhdanova N E, Zholkevich V N. Changes in the levels of IAA and ABA in cucumber leaves under progressive soil drought. Russian Journal of Plant Physiology, 2004, 51: 513-517.

[6] Huang G T, Ma S L, Bai L P, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo Z F. Signal transduction during cold, salt, and drought stresses in plants. Molecular Biology Reports, 2012, 39: 969-987.

[20] Hartung W, Slovik S. Physicochemical properties of plant growth regulators and plant tissues determine their distribution and redistribution: stomatal regulation by abscisic acid in leaves. New Phytologist, 1991, 119: 361-382.

[19] Sauter A, Dietz K J, Hartung W. A possible stress physiological role of abscisic acid conjugates in root-to-shoot signalling. Plant, Cell & Environment, 2002, 25: 223-228.

[9] Hou Z X, Huang W D. Immunohistochemical localization of IAA and ABP1 in strawberry shoot apexes during floral induction. Planta, 2005, 222: 678-687.

[7] Peleg Z, Blumwald E. Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology, 2011, 14: 290-295.

[21] 关义新, 戴俊英, 林艳.水分胁迫下植物叶片光合的气孔和非气孔限制. 植物生理学通讯, 1995, 31(4): 293-297.Guan Y X, Dai J Y, Lin Y. The photosynthetic stomatal and nonstomatal limitation of plant leaves under water stress. Plant Physiology Communications, 1995, 31(4): 293-297. (in Chinese)

[10] 陈丹, 赵洁. 适合于植物花器官的冰冻切片技术. 植物科学学报, 2005, 23: 285-290.Chen D, Zhao J. Suitable cryo-sectioning technique in floral organs of plants. Journal of Wuhan Botanical Research, 2005, 23: 285-290. (in Chinese)

[8] Pustovoitova T N, Zhdanova N E, Zholkevich V N. Changes in the levels of IAA and ABA in cucumber leaves under progressive soil drought. Russian Journal of Plant Physiology, 2004, 51: 513-517.

[22] Acharya B R, Assmann S M. Hormone interactions in stomatal function. Plant Molecular Biology, 2009, 69: 451-462.

[11] 宋怀宇, 赵启韬, 王万忠. 激光共聚焦显微镜对肝组织TGF-β1的荧光定量分析. 山东医药, 2008, 48(9): 38-39.Song H Y, Zhao Q T, Wang W Z. Quantitative analysis of transform growth factor-β1 expression in liver tissue with confocal laser microscopy. Shandong Medical Journal, 2008, 48(9): 38-39. (in Chinese)

[23] 袁朝兴, 丁静. 水分胁迫对棉花叶片中 IAA 含量, IAA 氧化酶和过氧物. 植物生理学报, 1990, 16(2): 179-184.Yuan C X, Ding J. The effects of water stress on the content of IAA, IAA oxidase and peroxidase enzyme activity in cotton leaves. Plant Physiology Journal, 1990, 16(2): 179-184. (in Chinese)

[20] Hartung W, Slovik S. Physicochemical properties of plant growth regulators and plant tissues determine their distribution and redistribution: stomatal regulation by abscisic acid in leaves. New Phytologist, 1991, 119: 361-382.

[12] 张莹, 陈建伟, 徐建亚, 李海涛. 明党参中香豆素成分的组织定位,分布和荧光相对定量研究. 时珍国医国药, 2011, 22(3): 625-627.Zhang Y, Chen J W, Xu J Y, Li H T. Tissue localization, distribution and fluorescence relative quantitative of coumarins in changium smyrnioides wolff. Lishizhen Medicine and Materia Medica Research, 2011, 22(3): 625-627. (in Chinese)

[24] 陈立松, 刘星辉. 水分胁迫对龙眼幼苗叶片膜脂过氧化及内源保护体系的影响. 武汉植物学研究, 1999, 17(2): 105-109.Chen L S, Liu X H. Effects of water strese on leaf membrane lipid peroxidation and endogenous protective systems in longan young seedlings. Journal of Wuhan Botanical Research, 1999, 17(2): 105-109. (in Chinese)

[21] 关义新, 戴俊英, 林艳.水分胁迫下植物叶片光合的气孔和非气孔限制. 植物生理学通讯, 1995, 31(4): 293-297.Guan Y X, Dai J Y, Lin Y. The photosynthetic stomatal and nonstomatal limitation of plant leaves under water stress. Plant Physiology Communications, 1995, 31(4): 293-297. (in Chinese)

[9] Hou Z X, Huang W D. Immunohistochemical localization of IAA and ABP1 in strawberry shoot apexes during floral induction. Planta, 2005, 222: 678-687.

[10] 陈丹, 赵洁. 适合于植物花器官的冰冻切片技术. 植物科学学报, 2005, 23: 285-290.Chen D, Zhao J. Suitable cryo-sectioning technique in floral organs of plants. Journal of Wuhan Botanical Research, 2005, 23: 285-290. (in Chinese)

[13] Deng A, Tan W, He S, Liu W, Nan T, Li Z, Wang B, Li Q X. Monoclonal antibody-based enzyme linked immunosorbent assay for the analysis of jasmonates in plants. Journal of Integrative Plant Biology, 2008, 50: 1046-1052.

[25] Mills V M, Todd G W. Effects of water stress on the indoleacetic acid oxidase activity in wheat leaves. Plant Physiology, 1973, 51: 1145-1146.

[22] Acharya B R, Assmann S M. Hormone interactions in stomatal function. Plant Molecular Biology, 2009, 69: 451-462.

[14] 高天鹏, 安黎哲, 冯虎元. 增强UV-B辐射和干旱对不同品种春小麦生长、产量和生物量的影响. 中国农业科学, 2009, 42(6): 1933-1940.Gao T P, An L Z, Feng H Y. Effects of enhanced UV-B irradiance and drought stress on the growth, production, and biomass of spring wheat. Scientia Agricultura Sinica, 2009, 42(6): 1933-1940. (in Chinese)

[11] 宋怀宇, 赵启韬, 王万忠. 激光共聚焦显微镜对肝组织TGF-β1的荧光定量分析. 山东医药, 2008, 48(9): 38-39.Song H Y, Zhao Q T, Wang W Z. Quantitative analysis of transform growth factor-β1 expression in liver tissue with confocal laser microscopy. Shandong Medical Journal, 2008, 48(9): 38-39. (in Chinese)

[23] 袁朝兴, 丁静. 水分胁迫对棉花叶片中 IAA 含量, IAA 氧化酶和过氧物. 植物生理学报, 1990, 16(2): 179-184.Yuan C X, Ding J. The effects of water stress on the content of IAA, IAA oxidase and peroxidase enzyme activity in cotton leaves. Plant Physiology Journal, 1990, 16(2): 179-184. (in Chinese)

[24] 陈立松, 刘星辉. 水分胁迫对龙眼幼苗叶片膜脂过氧化及内源保护体系的影响. 武汉植物学研究, 1999, 17(2): 105-109.Chen L S, Liu X H. Effects of water strese on leaf membrane lipid peroxidation and endogenous protective systems in longan young seedlings. Journal of Wuhan Botanical Research, 1999, 17(2): 105-109. (in Chinese)

[26] Sakurai N, Akiyama M, Kuraishi S. Roles of abscisic acid and indoleacetic acid in the stunted growth of water-stressed, etiolated squash hypocotyls. Plant and Cell Physiology, 1985, 26: 15-24.

[12] 张莹, 陈建伟, 徐建亚, 李海涛. 明党参中香豆素成分的组织定位,分布和荧光相对定量研究. 时珍国医国药, 2011, 22(3): 625-627.Zhang Y, Chen J W, Xu J Y, Li H T. Tissue localization, distribution and fluorescence relative quantitative of coumarins in changium smyrnioides wolff. Lishizhen Medicine and Materia Medica Research, 2011, 22(3): 625-627. (in Chinese)

[15] Campalans A, Messeguer R, Goday A, Pagès M. Plant responses to drought, from ABA signal transduction events to the action of the induced proteins. Plant Physiology and Biochemistry, 1999, 37: 327-340.

[25] Mills V M, Todd G W. Effects of water stress on the indoleacetic acid oxidase activity in wheat leaves. Plant Physiology, 1973, 51: 1145-1146.

[27] Eliasson L. Effect of indoleacetic acid on the abscisic acid level in stem tissue. Physiologia Plantarum, 1975, 34: 117-120.

[13] Deng A, Tan W, He S, Liu W, Nan T, Li Z, Wang B, Li Q X. Monoclonal antibody-based enzyme linked immunosorbent assay for the analysis of jasmonates in plants. Journal of Integrative Plant Biology, 2008, 50: 1046-1052.

[16] Dodd I C, Egea G, Watts C W, Whalley W R. Root water potential integrates discrete soil physical properties to influence ABA signalling during partial rootzone drying. Journal of Experimental Botany, 2010, 61: 3543-3551.

[14] 高天鹏, 安黎哲, 冯虎元. 增强UV-B辐射和干旱对不同品种春小麦生长、产量和生物量的影响. 中国农业科学, 2009, 42(6): 1933-1940.Gao T P, An L Z, Feng H Y. Effects of enhanced UV-B irradiance and drought stress on the growth, production, and biomass of spring wheat. Scientia Agricultura Sinica, 2009, 42(6): 1933-1940. (in Chinese)

[17] 贾文锁, 王学臣, 张蜀秋, 娄成后. 水分胁迫下 ABA 由蚕豆根向地上部的运输及其在叶片组织中的分布. 植物生理学报, 1996, 22(4): 363-367.Jia W S, Wang X C, Zhang S Q, Lou C H. The transport of aba from root to shoot and its distribution in response to water stress in Vicia faba L. Plant Physiology Journal, 1996, 22(4): 363-367. (in Chinese)

[26] Sakurai N, Akiyama M, Kuraishi S. Roles of abscisic acid and indoleacetic acid in the stunted growth of water-stressed, etiolated squash hypocotyls. Plant and Cell Physiology, 1985, 26: 15-24.

[28] Schmelz E A, Engelberth J, Alborn H T, O'Donnell P, Sammons M, Toshima H, Tumlinson J H. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proceedings of the National Academy of Sciences of the USA, 2003, 100: 10552-10557.

[15] Campalans A, Messeguer R, Goday A, Pagès M. Plant responses to drought, from ABA signal transduction events to the action of the induced proteins. Plant Physiology and Biochemistry, 1999, 37: 327-340.

[29] 李岩, 潘海春, 李德全. 土壤干旱条件下玉米叶片内源激素含量及光合作用的变化. 植物生理学报, 2000, 26(4): 301-305.Li Y, Pan H C, Li D Q. Changes in contents of endogenous phytohormones and photosynthesis in leaves of maize (Zea mays L.) in drying soil. Acta Phytophysiologica Sinica, 2000, 26(4): 301-305. (in Chinese)

[18] Liang J, Zhang J, Wong M H. How do roots control xylem sap ABA concentration in response to soil drying? Plant and Cell Physiology, 1997, 38: 10-16.

[27] Eliasson L. Effect of indoleacetic acid on the abscisic acid level in stem tissue. Physiologia Plantarum, 1975, 34: 117-120.

[16] Dodd I C, Egea G, Watts C W, Whalley W R. Root water potential integrates discrete soil physical properties to influence ABA signalling during partial rootzone drying. Journal of Experimental Botany, 2010, 61: 3543-3551.

[30] Zhao M R, Han Y Y, Feng Y N, Li F, Wang W. Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat. Plant Cell Reports, 2012, 31: 671-685.

[17] 贾文锁, 王学臣, 张蜀秋, 娄成后. 水分胁迫下 ABA 由蚕豆根向地上部的运输及其在叶片组织中的分布. 植物生理学报, 1996, 22(4): 363-367.Jia W S, Wang X C, Zhang S Q, Lou C H. The transport of aba from root to shoot and its distribution in response to water stress in Vicia faba L. Plant Physiology Journal, 1996, 22(4): 363-367. (in Chinese)

[28] Schmelz E A, Engelberth J, Alborn H T, O'Donnell P, Sammons M, Toshima H, Tumlinson J H. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proceedings of the National Academy of Sciences of the USA, 2003, 100: 10552-10557.

[19] Sauter A, Dietz K J, Hartung W. A possible stress physiological role of abscisic acid conjugates in root-to-shoot signalling. Plant, Cell & Environment, 2002, 25: 223-228.

[29] 李岩, 潘海春, 李德全. 土壤干旱条件下玉米叶片内源激素含量及光合作用的变化. 植物生理学报, 2000, 26(4): 301-305.Li Y, Pan H C, Li D Q. Changes in contents of endogenous phytohormones and photosynthesis in leaves of maize (Zea mays L.) in drying soil. Acta Phytophysiologica Sinica, 2000, 26(4): 301-305. (in Chinese)

[18] Liang J, Zhang J, Wong M H. How do roots control xylem sap ABA concentration in response to soil drying? Plant and Cell Physiology, 1997, 38: 10-16.

[20] Hartung W, Slovik S. Physicochemical properties of plant growth regulators and plant tissues determine their distribution and redistribution: stomatal regulation by abscisic acid in leaves. New Phytologist, 1991, 119: 361-382.

[21] 关义新, 戴俊英, 林艳.水分胁迫下植物叶片光合的气孔和非气孔限制. 植物生理学通讯, 1995, 31(4): 293-297.Guan Y X, Dai J Y, Lin Y. The photosynthetic stomatal and nonstomatal limitation of plant leaves under water stress. Plant Physiology Communications, 1995, 31(4): 293-297. (in Chinese)

[30] Zhao M R, Han Y Y, Feng Y N, Li F, Wang W. Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat. Plant Cell Reports, 2012, 31: 671-685.

[19] Sauter A, Dietz K J, Hartung W. A possible stress physiological role of abscisic acid conjugates in root-to-shoot signalling. Plant, Cell & Environment, 2002, 25: 223-228.

[22] Acharya B R, Assmann S M. Hormone interactions in stomatal function. Plant Molecular Biology, 2009, 69: 451-462.

[23] 袁朝兴, 丁静. 水分胁迫对棉花叶片中 IAA 含量, IAA 氧化酶和过氧物. 植物生理学报, 1990, 16(2): 179-184.Yuan C X, Ding J. The effects of water stress on the content of IAA, IAA oxidase and peroxidase enzyme activity in cotton leaves. Plant Physiology Journal, 1990, 16(2): 179-184. (in Chinese)

[20] Hartung W, Slovik S. Physicochemical properties of plant growth regulators and plant tissues determine their distribution and redistribution: stomatal regulation by abscisic acid in leaves. New Phytologist, 1991, 119: 361-382.

[24] 陈立松, 刘星辉. 水分胁迫对龙眼幼苗叶片膜脂过氧化及内源保护体系的影响. 武汉植物学研究, 1999, 17(2): 105-109.Chen L S, Liu X H. Effects of water strese on leaf membrane lipid peroxidation and endogenous protective systems in longan young seedlings. Journal of Wuhan Botanical Research, 1999, 17(2): 105-109. (in Chinese)

[21] 关义新, 戴俊英, 林艳.水分胁迫下植物叶片光合的气孔和非气孔限制. 植物生理学通讯, 1995, 31(4): 293-297.Guan Y X, Dai J Y, Lin Y. The photosynthetic stomatal and nonstomatal limitation of plant leaves under water stress. Plant Physiology Communications, 1995, 31(4): 293-297. (in Chinese)

[25] Mills V M, Todd G W. Effects of water stress on the indoleacetic acid oxidase activity in wheat leaves. Plant Physiology, 1973, 51: 1145-1146.

[22] Acharya B R, Assmann S M. Hormone interactions in stomatal function. Plant Molecular Biology, 2009, 69: 451-462.

[26] Sakurai N, Akiyama M, Kuraishi S. Roles of abscisic acid and indoleacetic acid in the stunted growth of water-stressed, etiolated squash hypocotyls. Plant and Cell Physiology, 1985, 26: 15-24.

[23] 袁朝兴, 丁静. 水分胁迫对棉花叶片中 IAA 含量, IAA 氧化酶和过氧物. 植物生理学报, 1990, 16(2): 179-184.Yuan C X, Ding J. The effects of water stress on the content of IAA, IAA oxidase and peroxidase enzyme activity in cotton leaves. Plant Physiology Journal, 1990, 16(2): 179-184. (in Chinese)

[27] Eliasson L. Effect of indoleacetic acid on the abscisic acid level in stem tissue. Physiologia Plantarum, 1975, 34: 117-120.

[24] 陈立松, 刘星辉. 水分胁迫对龙眼幼苗叶片膜脂过氧化及内源保护体系的影响. 武汉植物学研究, 1999, 17(2): 105-109.Chen L S, Liu X H. Effects of water strese on leaf membrane lipid peroxidation and endogenous protective systems in longan young seedlings. Journal of Wuhan Botanical Research, 1999, 17(2): 105-109. (in Chinese)

[28] Schmelz E A, Engelberth J, Alborn H T, O'Donnell P, Sammons M, Toshima H, Tumlinson J H. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proceedings of the National Academy of Sciences of the USA, 2003, 100: 10552-10557.

[25] Mills V M, Todd G W. Effects of water stress on the indoleacetic acid oxidase activity in wheat leaves. Plant Physiology, 1973, 51: 1145-1146.

[29] 李岩, 潘海春, 李德全. 土壤干旱条件下玉米叶片内源激素含量及光合作用的变化. 植物生理学报, 2000, 26(4): 301-305.Li Y, Pan H C, Li D Q. Changes in contents of endogenous phytohormones and photosynthesis in leaves of maize (Zea mays L.) in drying soil. Acta Phytophysiologica Sinica, 2000, 26(4): 301-305. (in Chinese)

[26] Sakurai N, Akiyama M, Kuraishi S. Roles of abscisic acid and indoleacetic acid in the stunted growth of water-stressed, etiolated squash hypocotyls. Plant and Cell Physiology, 1985, 26: 15-24.

[30] Zhao M R, Han Y Y, Feng Y N, Li F, Wang W. Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat. Plant Cell Reports, 2012, 31: 671-685.

[27] Eliasson L. Effect of indoleacetic acid on the abscisic acid level in stem tissue. Physiologia Plantarum, 1975, 34: 117-120.

[28] Schmelz E A, Engelberth J, Alborn H T, O'Donnell P, Sammons M, Toshima H, Tumlinson J H. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proceedings of the National Academy of Sciences of the USA, 2003, 100: 10552-10557.

[29] 李岩, 潘海春, 李德全. 土壤干旱条件下玉米叶片内源激素含量及光合作用的变化. 植物生理学报, 2000, 26(4): 301-305.Li Y, Pan H C, Li D Q. Changes in contents of endogenous phytohormones and photosynthesis in leaves of maize (Zea mays L.) in drying soil. Acta Phytophysiologica Sinica, 2000, 26(4): 301-305. (in Chinese)

[30] Zhao M R, Han Y Y, Feng Y N, Li F, Wang W. Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat. Plant Cell Reports, 2012, 31: 671-685.


  本文关键词:增强UV-B辐射和干旱对不同品种春小麦生长、产量和生物量的影响,,由笔耕文化传播整理发布。



本文编号:238501

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/shengwushengchang/238501.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户bc92d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com