基于深度网络的鲁棒目标跟踪方法研究
发布时间:2021-06-09 20:35
目标跟踪是计算机视觉领域中的重要研究方向,在视频监控、智能交通、视觉导航和军事制导等方面有着深刻的研究意义和深远的应用前景。目标跟踪的实质是在连续的视频图像序列中预测特定目标状态,即持续估计目标对象位置和尺度信息。然而,在实际跟踪的复杂环境下,实现准确性高且鲁棒性强的目标跟踪面临众多困难和挑战。利用深度神经网络实现的目标跟踪算法由于其高效的特征表达能力和分类判别能力备受关注,本文以基于卷积神经网络的跟踪算法为基础,分别从网络模型构建和外观特征建模的角度对目标跟踪算法的鲁棒性进行深入研究,旨在提高算法准确性和稳定性,从而有效缓解复杂跟踪场景下的目标漂移问题。本文针对网络模型在长期跟踪过程中被歧义样本污染导致可靠性降低的问题,提出了一种基于可靠性度量网络的目标跟踪算法。该方法将可靠性度量网络和任意卷积神经网络通过共享卷积层的方式进行连接,利用双重网络判定当前预测结果的可靠程度并且修正偏差跟踪结果,从而有效避免预测误差过度累积和整体网络判别能力下降的问题。为使可靠性度量网络能够更加准确地估计预测结果与真实目标的相似程度,该方法采用特征选择模型和相似度量融合策略分别优化目标外观特征和相似度量标...
【文章来源】:大连理工大学辽宁省 211工程院校 985工程院校 教育部直属院校
【文章页数】:75 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
1 绪论
1.1 课题背景及意义
1.2 国内外研究现状
1.2.1 目标跟踪研究内容
1.2.2 目标跟踪任务难点
1.2.3 目标跟踪研究进展
1.3 本文内容与章节安排
2 卷积神经网络理论基础
2.1 神经网络概述
2.1.1 人工神经元模型
2.1.2 前馈神经网络架构
2.2 卷积神经网络
2.2.1 卷积神经网络发展进程
2.2.2 卷积神经网络特性
2.2.3 卷积神经网络结构
2.3 神经网络传播算法
2.3.1 前向传播算法
2.3.2 误差反向传播算法
2.4 本章小结
3 基于可靠性度量网络的目标跟踪算法
3.1 问题描述
3.2 算法描述
3.3 可靠性度量网络模型搭建
3.4 样本数据优化策略
3.4.1 特征选择模型
3.4.2 样本相似度量融合
3.5 网络模型更新策略
3.6 实验结果与分析
3.7 本章小结
4 基于注意力机制的孪生候选区域生成网络目标跟踪算法
4.1 问题描述
4.2 孪生候选区域生成网络思想
4.2.1 孪生神经网络
4.2.2 候选区域生成网络
4.2.3 边界框回归策略
4.3 注意力机制思想
4.4 基于注意力机制的孪生候选区域生成网络算法
4.4.1 算法描述
4.4.2 注意力机制网络模型
4.4.3 基于注意力网络的多尺度目标跟踪
4.5 实验结果与分析
4.6 本章小结
结论
参考文献
攻读硕士学位期间发表学术论文情况
致谢
【参考文献】:
期刊论文
[1]军用无人机技术智能化发展及应用[J]. 尹欣繁,章贵川,彭先敏,李雷,田斌. 国防科技. 2018(05)
[2]基于体感的在线互动教育游戏设计与实现[J]. 班蕊,丁丹丹,张明敏,沈华清. 系统仿真学报. 2017(11)
[3]Kernel density estimation and marginalized-particle based probability hypothesis density filter for multi-target tracking[J]. 张路平,王鲁平,李飚,赵明. Journal of Central South University. 2015(03)
[4]引入视觉注意机制的目标跟踪方法综述[J]. 黎万义,王鹏,乔红. 自动化学报. 2014(04)
[5]多特征自适应融合的军事伪装目标跟踪[J]. 李科,徐克虎,张波. 计算机工程与应用. 2012(34)
博士论文
[1]复杂动态场景下在线视觉目标跟踪算法研究[D]. 齐苑辰.东北大学 2015
[2]目标跟踪系统中的鲁棒性研究[D]. 姚志均.华中科技大学 2012
本文编号:3221272
【文章来源】:大连理工大学辽宁省 211工程院校 985工程院校 教育部直属院校
【文章页数】:75 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
1 绪论
1.1 课题背景及意义
1.2 国内外研究现状
1.2.1 目标跟踪研究内容
1.2.2 目标跟踪任务难点
1.2.3 目标跟踪研究进展
1.3 本文内容与章节安排
2 卷积神经网络理论基础
2.1 神经网络概述
2.1.1 人工神经元模型
2.1.2 前馈神经网络架构
2.2 卷积神经网络
2.2.1 卷积神经网络发展进程
2.2.2 卷积神经网络特性
2.2.3 卷积神经网络结构
2.3 神经网络传播算法
2.3.1 前向传播算法
2.3.2 误差反向传播算法
2.4 本章小结
3 基于可靠性度量网络的目标跟踪算法
3.1 问题描述
3.2 算法描述
3.3 可靠性度量网络模型搭建
3.4 样本数据优化策略
3.4.1 特征选择模型
3.4.2 样本相似度量融合
3.5 网络模型更新策略
3.6 实验结果与分析
3.7 本章小结
4 基于注意力机制的孪生候选区域生成网络目标跟踪算法
4.1 问题描述
4.2 孪生候选区域生成网络思想
4.2.1 孪生神经网络
4.2.2 候选区域生成网络
4.2.3 边界框回归策略
4.3 注意力机制思想
4.4 基于注意力机制的孪生候选区域生成网络算法
4.4.1 算法描述
4.4.2 注意力机制网络模型
4.4.3 基于注意力网络的多尺度目标跟踪
4.5 实验结果与分析
4.6 本章小结
结论
参考文献
攻读硕士学位期间发表学术论文情况
致谢
【参考文献】:
期刊论文
[1]军用无人机技术智能化发展及应用[J]. 尹欣繁,章贵川,彭先敏,李雷,田斌. 国防科技. 2018(05)
[2]基于体感的在线互动教育游戏设计与实现[J]. 班蕊,丁丹丹,张明敏,沈华清. 系统仿真学报. 2017(11)
[3]Kernel density estimation and marginalized-particle based probability hypothesis density filter for multi-target tracking[J]. 张路平,王鲁平,李飚,赵明. Journal of Central South University. 2015(03)
[4]引入视觉注意机制的目标跟踪方法综述[J]. 黎万义,王鹏,乔红. 自动化学报. 2014(04)
[5]多特征自适应融合的军事伪装目标跟踪[J]. 李科,徐克虎,张波. 计算机工程与应用. 2012(34)
博士论文
[1]复杂动态场景下在线视觉目标跟踪算法研究[D]. 齐苑辰.东北大学 2015
[2]目标跟踪系统中的鲁棒性研究[D]. 姚志均.华中科技大学 2012
本文编号:3221272
本文链接:https://www.wllwen.com/kejilunwen/shengwushengchang/3221272.html
最近更新
教材专著