港口规划中气象要素的统计分析
本文关键词: 气象要素 港口规划 统计分析 最大熵分布 Copula 出处:《中国海洋大学》2014年硕士论文 论文类型:学位论文
【摘要】:气象条件是影响港口工程建设与营运的主要因素。无论风、降水,还是雾,都对港口工程建设、港口规划、港口营运等产生极大的影响。收集港口所在地的气象观测资料,研究其发生与成灾的特点,准确做好统计分析工作,客观地推算不同气象要素的统计指标,对加强港口营运水平,,提高港口通过能力有着非常重要的意义。现有的气象指标计算方法基本是单变量的,有时不能反映各种要素之间的相互影响。因此,通过对观测资料的进一步分析(二元或多元),获得符合客观实际的环境参数,对于提高港口规划质量,分析港口营运能力至关重要。 本文通过收集青岛地区1948~1977年气象观测资料,包括风、降水,以及雾的观测资料,在传统数理统计做法的基础上,对每一种单独的气象要素采用最大熵分布进行了建模计算,得到了一维气象统计结果;采用基于正态Copula的二维最大熵分布,对青岛地区历年(或历年各月)日最大降水量及其发生的时刻进行了二维统计分析,其结果对于合理安排港口作业时间,避免怠工损失有重要的参考价值。本文的主要工作如下: 1.利用最大熵分布函数,对青岛地区历年大于某些风级、日降水量、某种能见度的天数进行了拟合分析,给出了相应风级天数、相应降水天数、相应能见度天数的设计重现值,可为港口工程设计、施工提供参考,及早做出相应防范。特别是当日降水量大于等于25mm时,规划上认为港口应停止装卸作业,否则将产生危险,因此日降水量大于等于25mm天数的重现值对于设计意义重要。 2.利用基于正态Copula的二维最大熵分布,建立了(RY, LY)和(RM, LM)的二维联合概率模型,通过对二者的相关统计分析,进一步得到历年/各月日最大降水量及其所处位置的关系,为港口工程作业时所面临最困难(或最危险)的情况提供定量化的意见指导。结果表明,当联合重现期为某个值时,有无数组RY和LY(或RMi和LMi)与其对应,此时给定一个日最大降水量,就可以得到该降水量相应所处该年的确切位置。
[Abstract]:Weather conditions are the main factors that affect the construction and operation of port engineering. No matter the wind, precipitation, fog or fog, all of the port engineering construction, port planning. The meteorological observation data of the port location are collected, the characteristics of the occurrence and disaster are studied, the statistical analysis work is done correctly, and the statistical indexes of different meteorological elements are calculated objectively. It is very important to strengthen the level of port operation and improve the capacity of port transit. The existing meteorological index calculation methods are basically univariate and sometimes can not reflect the interaction between various elements. Through the further analysis of observation data (binary or multivariate), it is very important to obtain the environmental parameters which accord with the objective reality for improving the quality of the port planning and analyzing the port operation capacity. In this paper, the meteorological observation data, including wind, precipitation and fog, are collected from 1948-#date0# in Qingdao, based on the traditional mathematical statistical methods. The maximum entropy distribution is used to model and calculate each individual meteorological element, and the one-dimensional meteorological statistical results are obtained. The two-dimensional maximum entropy distribution based on normal Copula is used to analyze the maximum daily precipitation and its occurrence time in Qingdao area. The results have important reference value for arranging port operation time reasonably and avoiding idle work losses. The main work of this paper is as follows: 1. By using the maximum entropy distribution function, the days of daily precipitation and visibility in Qingdao area are fitted and analyzed, and the corresponding days of wind scale and corresponding precipitation are given. The design recurrence value of the corresponding visibility days can provide reference for port engineering design and construction, and make corresponding precautions as early as possible, especially when the daily precipitation is greater than or equal to 25mm. According to the plan, the port should stop loading and unloading, otherwise it will be dangerous, so it is important for the design that the daily precipitation is more than 25mm days. 2. Using the two-dimensional maximum entropy distribution based on normal Copula, the two dimensional joint probability models of RY, LY) and RM, LM) are established, and the correlation between them is analyzed. The relationship between the maximum precipitation and the location of the maximum precipitation per calendar year / month is further obtained to provide quantitative guidance on the most difficult (or most dangerous) situations facing port engineering operations. When the joint recurrence period is a certain value, there are countless groups of ry and LY (or RMi and LMi) corresponding to them. At this time, given a maximum daily precipitation, the exact position of the precipitation corresponding to that year can be obtained.
【学位授予单位】:中国海洋大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U652.5;U651
【参考文献】
相关期刊论文 前10条
1 石先武;方伟华;林伟;李颖;;基于极值理论的中国台风降水分布不确定性分析[J];北京师范大学学报(自然科学版);2011年05期
2 王莉萍;孙效光;吕可波;徐德伦;;A Maximum-Entropy Compound Distribution Model for Extreme Wave Heights of Typhoon-Affected Sea Areas[J];China Ocean Engineering;2012年01期
3 赵伟,杨永增,于卫东,乔方利;长期极值统计理论及其在海洋环境参数统计分析中的应用[J];海洋科学进展;2003年04期
4 段忠东,周道成,肖仪清,欧进萍,陆钦年;极值风浪联合概率模型参数估计的简化方法[J];哈尔滨建筑大学学报;2002年06期
5 杨清华;张林;薛振和;许淙;;南极长城站海雾特征分析[J];极地研究;2007年02期
6 董胜,李奉利,孙瑞文;风暴增水随机分析的过阈法及其统计计算模式[J];青岛海洋大学学报(自然科学版);2000年03期
7 董胜;许鹏婧;刘伟;;胶州湾风暴潮增水重现值的长期预测[J];中国海洋大学学报(自然科学版);2009年05期
8 董胜;林雪;陶山山;刘锦昆;;基于危险率分析的风浪联合重现期研究[J];中国海洋大学学报(自然科学版);2012年03期
9 覃爱基;;皮尔逊Ⅲ型条件概率计算方法[J];人民长江;1986年12期
10 张福春;西北太平洋海雾的统计分析[J];海洋学报(中文版);1982年02期
本文编号:1491198
本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/1491198.html