当前位置:主页 > 科技论文 > 水利工程论文 >

转叶螺旋流消能装置试验研究

发布时间:2018-05-27 07:12

  本文选题:转叶 + 螺旋流 ; 参考:《太原理工大学》2014年硕士论文


【摘要】:大型水利工程项目,以及水电站、火电站中水、泥浆及各种材料的长距离高压水水力输送都必须依赖于管道。水流的水压是管道能输送液体的必要条件,而现实中有一些管道系统由于它存在的自然条件,即地形地貌条件的影响,初始水头大于输送流体所需要消耗的最大能量,而这部分剩下来的多余的能量就会对向下游设备产生不必的破坏,从而带来不必要的风险。所以,为了保障管道及下游设备的安全,必须研究一种有效而且经济适用的消能装置,把管道内多余的能量消散出去。 本文主要论述了的以测试转叶螺旋流消能装置的的消能效率为主要目的具体试验过程,论述其消能过程和消能的原理,与过去导师延耀兴做的同类型采用的单纯的孔板消能装能进行相互对比,并总结各种消能装置的优缺点。 本文基于科学的物理试验和大量的能量耗散资料,重点对转叶螺旋流消能装置在水流能量消散过程中的各个测试点压力分布情况和测试管局部阻力系数进行了研究,分析了此消能装置的能量消散原理和消能效率,研究的主要内容包括: 1、在不同的雷诺数条件下,即在管道内流量不同的条件下,能量消耗装置转叶板在不同扭转角度的情况下,通过对测试管各个测压断面的压力的分析,不同转叶板开口方案下,消能装置各个部件处的压差大小,确定安装转叶板处是该能量消散装置的主要消能区。 2、通过试验数据来计算此能量消散装置中各组成部件的耗能效果,以及此装置局部阻力系数。 3、对试验数据进行分析,确定影响转叶螺旋流消能装置消能效果的参数,以及以上参数对消能效果的影响程度。 4、对比转叶消能装置和孔板消能装置的消能效率,确定两种消能装置哪种更实用更适合应用于现实的管道工程中。 通过对试验所得的数据进行多方面全方位的分析,本文得出如下结论: 1)本文研究的转叶螺旋流消能装置的总消能效率最高可达85%,此装置完全可以被应用于工程实践中。 2)本试验装置可以根据改变转叶板的物理参数来控制消能效率。改变转叶板的开口角度和转叶板之间的扭转角度,得到的消能效率是不同的。 3)该装置消能效率与转叶板之间的扭转角度成正比,与雷诺数成正比,与转叶板的开口角度成反比。 4)该装置的主要消能区在安装有转叶板的区段,这是因为水流在转叶板作用下不但产生孔口射流还产生了螺旋流,所以此段耗能效果最好。 5)该消能装置结构简单,装卸方便,可操作性强。 6)该装置比与其消能原理类似的孔板消能装置更实用,消能效率更高,更应该被用于水利工程中。
[Abstract]:Large water conservancy projects, as well as hydropower stations, thermal power stations, water, mud and all kinds of materials for long distance high pressure hydraulic transport must rely on pipelines. The pressure of water flow is the necessary condition for the pipeline to carry liquid, but in reality there are some pipeline systems whose initial head is larger than the maximum energy needed to transport the fluid because of its natural condition, that is, the influence of topographic and geomorphological conditions. The excess energy left over would cause unnecessary damage to downstream equipment, thereby creating unnecessary risks. Therefore, in order to ensure the safety of the pipeline and downstream equipment, an effective and economical energy dissipation device must be developed to dissipate the excess energy in the pipeline. In this paper, the main purpose of this paper is to test the energy dissipation efficiency of rotating blade spiral flow dissipators as the main purpose of the specific test process, and discuss its energy dissipation process and the principle of energy dissipation. Compared with the former tutor Yan Yaoxing made by the same type of simple hole plate energy dissipation, and summed up the advantages and disadvantages of various energy dissipation devices. Based on scientific physical experiments and a large amount of energy dissipation data, the pressure distribution of each test point and the local resistance coefficient of the test tube during the energy dissipation of the rotating blade helical flow energy dissipation device are studied in this paper. The energy dissipation principle and energy dissipation efficiency of this energy dissipation device are analyzed. The main contents of the study are as follows: 1. Under the condition of different Reynolds number, that is, under the condition of different flow rate in the pipeline, under different torsion angle, through the analysis of the pressure of each pressure measuring section of the test pipe, under the different opening scheme of the rotary blade plate, The main energy dissipation area of the energy dissipation device is the pressure difference between the parts of the energy dissipation device and the installation of the rotating blade plate. 2. The energy dissipation effect of each component of the device and the local resistance coefficient of the device are calculated by the experimental data. 3. The experimental data are analyzed to determine the parameters that affect the energy dissipation effect of spiral flow energy dissipation device and the influence degree of the above parameters on the energy dissipation effect. 4. By comparing the energy dissipation efficiency of rotating vanes and orifice plate energy dissipation devices, it is determined which of the two energy dissipation devices is more practical and more suitable for practical pipeline engineering. Through the comprehensive analysis of the data obtained from the experiment, this paper draws the following conclusions: 1) the total energy dissipation efficiency of the rotary blade spiral flow energy dissipation device studied in this paper is as high as 850.This device can be used in engineering practice. 2) the energy dissipation efficiency can be controlled by changing the physical parameters of the rotor plate. The energy dissipation efficiency is different by changing the opening angle and the torsional angle between the rotor plate and the rotary blade plate. 3) the energy dissipation efficiency of the device is proportional to the torsion angle, Reynolds number and the opening angle of the rotor plate. 4) the main energy dissipation area of the device is in the section where the rotary blade plate is installed, which is because the flow of water under the action of the rotating blade plate not only produces the orifice jet but also the spiral flow, so the energy dissipation effect of this section is the best. 5) the energy dissipator has the advantages of simple structure, convenient loading and unloading and strong maneuverability. 6) this device is more practical and more efficient than the orifice plate energy dissipation device similar to its energy dissipation principle, and should be used in water conservancy engineering.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TV653

【参考文献】

相关期刊论文 前10条

1 皇甫润金;管道急流输水及多种消能形式的应用效果[J];科技情报开发与经济;2004年11期

2 吴勇;二维孔口紊动射流流场特性的实验研究[J];科技情报开发与经济;2005年09期

3 延耀兴;张杰;毛惠惠;;螺旋流消能装置消能效果试验研究[J];科技情报开发与经济;2005年23期

4 熊鳌魁,魏庆鼎;轴对称螺旋流解析解的探讨[J];力学与实践;1999年05期

5 阎庆绂,陈仰吾,高恩恩,李仲平;离心泵入口旋流的试验研究[J];农业机械学报;1992年01期

6 林秀山,沈凤生;小浪底水利枢纽孔板泄洪消能研究[J];水利水电技术;2000年01期

7 张建民,许唯临,刘善均,王韦;突扩突缩式内流消能工的数值模拟研究[J];水利学报;2004年12期

8 武鹏林,彭龙生;多级孔板消能效率初探[J];太原工业大学学报;1995年04期

9 武鹏林,彭龙生;螺旋管流输移固粒与起旋器效率[J];太原工业大学学报;1997年03期

10 彭龙生,张羽,任万森,刘春晶;螺旋流输移匀粒的能耗[J];太原理工大学学报;1998年06期



本文编号:1940979

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/1940979.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户afe00***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com