水平轴水轮机叶片的弯扭耦合设计及流固耦合计算
本文选题:水平轴水轮机叶片 + 复合材料 ; 参考:《哈尔滨工程大学》2014年硕士论文
【摘要】:随着新型清洁能源技术的不断创新与发展,潮流能的研究发展成为了各国新能源发展的一个新热点。水平轴水轮机是潮流能转换装置应用较为广泛的一种,如何提高水平轴水轮机叶片的性能是成为了潮流能开发研究的重点问题。复合材料由于其比强度高、比模量高、抗疲劳性能好、易成形、可设计性强等优点在风力机叶片和海洋工程结构中广泛应用,是水轮机叶片材料的新发展方向。论文主要内容有这几方面:(1)本文以水平轴水轮机叶片为研究对象,首先从水平轴水轮机的研究概况,接着介绍了近年来流固耦合的国内外研究现状、方法及成果,提出了本文的研究方法、研究思路以及研究内容。(2)本文简要介绍水轮机叶片的主要参数,探讨水轮机叶片的受力与运动特性,给出了影响水轮机性能的无量纲参数,探讨了水平轴水轮机叶片的叶素动量理论、涡理论和CFD三种研究方法,分别分析了这三种研究方法的优缺点。(3)本文基于CFD数值计算和有限元连续梁理论,利用CFX+ANSYS Mechanical建立了水平轴水轮机叶片单向流固耦合的方法,分别针对稳态和瞬态两种情况的数值模拟结果进行比较分析;另外一方面还将单向流固耦合的计算结果与基于叶素动量理论的计算结果做出对比,验证了该方法的可靠性、准确性。(4)本文将基于复合材料弯扭耦合理论设计了水平轴水轮机弯扭耦合叶片,并基于拉格朗日非线性规划理论对叶片的铺层厚度进行了优化设计,在保证叶片结构安全的前提下,将叶片的总量减轻了 6%,碳纤维布的使用面积减少近了 25%。另一方面利用单向流固耦合的方法,对优化后的弯扭耦合叶片的结构性能、弯扭耦合性能以及振动特性进行分析,有限元分析结果证明了叶片的结构强度满足强度要求,指出了叶片结构的危险区域。(5)本文提出研究水平轴水轮机叶片双向流固耦合的方法,该方法是基于CFD数值理论和有限元理论。该方法是通过输出叶片单元的节点信息的变化和更新流体计算域实现的。并利用该方法验证本文所设计的水平轴水轮机弯扭耦合叶片的水动力性能的提高,结果表明弯扭耦合叶片变形之后的最大能量利用率增加了 8%。
[Abstract]:With the continuous innovation and development of new clean energy technology, the research and development of tidal energy has become a new hot spot in the development of new energy. Horizontal shaft turbine is one of the widely used power flow energy conversion devices. How to improve the performance of horizontal shaft turbine blade has become a key issue in the research of power flow energy development. Due to its high specific strength, high specific modulus, good fatigue resistance, easy forming and strong designability, composite materials are widely used in wind turbine blades and offshore engineering structures. It is a new development direction of turbine blade materials. The main contents of this paper are as follows: (1) in this paper, the blade of horizontal shaft turbine is taken as the research object. Firstly, the research situation of horizontal shaft turbine is introduced, and then the research status, methods and achievements of fluid-solid coupling in recent years at home and abroad are introduced. This paper briefly introduces the main parameters of turbine blades, discusses the force and motion characteristics of turbine blades, and gives dimensionless parameters that affect the performance of hydraulic turbines. In this paper, the blade element momentum theory, vortex theory and CFD research methods of horizontal shaft turbine blades are discussed. The advantages and disadvantages of these three research methods are analyzed respectively. This paper is based on CFD numerical calculation and finite element continuous beam theory. The unidirectional fluid-solid coupling method of horizontal shaft turbine blade is established by using CFX ANSYS Mechanical. The numerical simulation results of steady and transient conditions are compared and analyzed respectively. On the other hand, the calculation results of unidirectional fluid-solid coupling are compared with those based on the blade element momentum theory, and the reliability of the method is verified. Veracity. 4) based on the theory of bending and torsional coupling of composite materials, the coupled blade of horizontal shaft hydraulic turbine is designed, and the layer thickness of blade is optimized based on Lagrange nonlinear programming theory. On the premise of ensuring the safety of blade structure, the total amount of blade is reduced by 6%, and the use area of carbon fiber cloth is reduced by nearly 25%. On the other hand, unidirectional fluid-solid coupling method is used to analyze the structural performance, bending and torsional coupling performance and vibration characteristics of the optimized bending-torsional coupling blade. The finite element analysis results show that the structural strength of the blade meets the strength requirements. This paper presents a method to study the two-way fluid-solid coupling of horizontal shaft turbine blades. The method is based on CFD numerical theory and finite element theory. The method is realized by changing the node information of the blade unit and updating the fluid computing domain. The proposed method is used to verify the improvement of the hydrodynamic performance of the bending-torsional coupling blade designed in this paper. The results show that the maximum energy utilization ratio of the bending-torsional coupled blade increases by 8% after deformation.
【学位授予单位】:哈尔滨工程大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TK730.3
【参考文献】
相关期刊论文 前9条
1 胡丹梅;张志超;孙凯;张建平;;风力机叶片流固耦合计算分析[J];中国电机工程学报;2013年17期
2 李志川;肖钢;张理;于汀;张亮;;CFD技术在潮流能发电装置设计中的应用[J];应用能源技术;2013年01期
3 潘林锋;周昌玉;陈士诚;;基于中心复合实验设计的区间有限元方法[J];机械设计与制造;2011年11期
4 顾铖璋;郑百林;;船用螺旋桨敞水性能与桨叶应力的数值分析[J];力学季刊;2011年03期
5 李波;李龙;杨丽;杨雪林;肖玉平;;潮流能的利用及研究状况[J];太阳能;2010年09期
6 卢学成;叶正寅;张陈安;;基于ANSYS/CFX耦合的机翼颤振分析[J];计算机仿真;2010年09期
7 张宇宁;刘树红;吴墒锋;吴玉林;;轴流式水轮机转轮流固耦合计算[J];工程热物理学报;2008年10期
8 何东晓;黄力刚;杨松;安庆升;;我国复合材料风机叶片的几种制造工艺与发展前景[J];纤维复合材料;2007年02期
9 朱实;;中国沿海农村海洋能源区划研究[J];科技通报;1989年05期
相关博士学位论文 前1条
1 王树杰;柔性叶片潮流能水轮机水动力学性能研究[D];中国海洋大学;2009年
相关硕士学位论文 前6条
1 齐书浩;微型四旋翼飞行器总体设计及其运动控制[D];上海交通大学;2013年
2 王浩;叶片流固耦合振动分析方法研究[D];南京航空航天大学;2012年
3 陈存福;潮流能水平轴水轮机叶片优化及水动力性能研究[D];中国海洋大学;2012年
4 罗鹏;海上浮式风力机气动力性能研究[D];哈尔滨工程大学;2012年
5 龚佳兴;基于弯扭耦合的仿生自适应风力机叶片的设计与评估[D];华南理工大学;2010年
6 党会学;同向旋转涡对融合的研究[D];西北工业大学;2007年
,本文编号:1960749
本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/1960749.html