当前位置:主页 > 科技论文 > 水利工程论文 >

淤沙对水力自控翻板闸门的影响研究

发布时间:2018-06-25 23:57

  本文选题:水力自控翻板闸门 + 淤沙 ; 参考:《西北农林科技大学》2016年硕士论文


【摘要】:水力自控翻板闸门构造简单,维护和消能的投入少,可靠性高,具有较大的泄流能力和较小的壅水,广泛应用于中小型水利工程,尤其在管理不便,水流湍急的山区低水头闸坝工程中,有广泛的应用前景。在山区多泥沙河流中修建翻板闸门,闸前泥沙淤积是关键问题之一。研究淤沙对水力自控翻板闸门的影响对完善翻板闸门理论,改进门体结构具有重要意义。论文针对目前我国应用最广泛的连杆滚轮式水力自控翻板闸门,以理论分析为基础,通过试验和数值模拟系统地研究了泥沙淤积对闸门开启过程、面板受力变形等产生的影响。得到的主要结论如下:(1)分析国内外翻板闸门的研究成果,指出已有研究的不足是未充分考虑闸前泥沙淤积对水力自控翻板闸门的影响。(2)考虑法向淤沙压力及附着力对连杆滚轮式翻板闸门受力的影响,建立翻板闸门开启前极限平衡状态下的力矩平衡方程,推求得出启门水位的理论计算方法。(3)以理论计算为基础,通过模型试验,对不同淤沙高度下的闸前水位与闸门倾角关系以及启门水位与淤沙高度关系进行研究,得出闸前淤沙主要导致翻板闸门的启门水位升高,对闸门的渐开性并无明显的影响。与无淤沙状态的启门水位相比,设计淤沙高度下的启门水位计算值升高了0.3%~5%,升高值占门顶水深的10.5%~62.3%;启门水位实测值升高了1.4%~5.6%,升高值占门顶水深的19.9%~48.3%。这表明,淤沙引起的启门水位升高是不能忽视的。在设计淤沙高度下,启门水位的实测值与计算值的相对误差为2.9%~4.0%,证明研究结果具有一定的可靠性。为简化计算,对启门水位计算值与淤沙高度的关系曲线进行拟合,得到了启门水位的拟合公式。(4)运用ANSYS软件,建立翻板闸门面板的有限元模型,对不同高度的泥沙淤积和启门水位下的有限元模型进行数值模拟,得出泥沙淤积及启门水位的升高导致门体的等效应力、第一主应力和变形不同程度地增大。闸前淤沙高度为0.4m和0.8m时的等效应力最大值分别比无淤沙时增加了5%和11.8%,说明淤沙及启门水位的升高对面板等效应力的影响较大。淤沙高度为0.4m和0.8m时的第一主应力最大值分别比无淤沙时增加了3.0%和5.8%,位移最大值分别增加了3.6%和7.0%,可见淤沙及启门水位升高对面板的第一主应力和变形也有一定的影响。(5)结合论文的研究成果,对翻板闸门闸前淤沙问题的研究提出了一些建议。
[Abstract]:Hydraulic automatic control gate with simple structure, less investment in maintenance and energy dissipation, high reliability, large discharge capacity and small backwater, is widely used in small and medium-sized water conservancy projects, especially in the inconvenient management. In the project of low head sluice dam in mountainous area with rapid flow, it has a wide application prospect. It is one of the key problems to build the sluice gate in the mountainous area with silt and silt in front of the sluice. The study of the influence of silt on hydraulic automatic control gate is of great significance to improve the theory and structure of the gate. Aiming at the most widely used hydraulic automatic control gate of connecting rod roller wheel in our country at present, based on theoretical analysis, the influence of silt deposition on the opening process of gate and the deformation of face slab is systematically studied by means of experiments and numerical simulation. The main conclusions are as follows: (1) the research results of flip gate at home and abroad are analyzed. It is pointed out that the influence of sediment deposition in front of sluice on hydraulic automatic control gate is not fully considered. (2) considering the influence of normal silt pressure and adhesion on the force of connecting rod rolling wheel gate. The moment equilibrium equation under the limit equilibrium state before the opening of the flip gate is established, and the theoretical calculation method of the opening gate water level is derived. (3) based on the theoretical calculation, the model test is carried out. The relationship between sluice front water level and gate inclination angle and opening gate water level and silt height under different silt height are studied. It is concluded that the silt level in front of sluice gate mainly leads to the increase of opening water level, but has no obvious effect on the gradual opening of gate. Compared with the open gate water level without silt state, the calculated value of the open door water level at the design silt height has increased 0.33%, and the increase value is 10.5% and 62.3% of the water depth at the top of the gate, and the measured value of the opening door water level has increased by 1.4 ~ 5.6%, which accounts for 19.948.3% of the water depth at the top of the gate. This shows that the elevation of water level caused by silt can not be ignored. Under the design silt height, the relative error between the measured value and the calculated value of the open door water level is 2.9 and 4.0, which proves that the research results have certain reliability. In order to simplify the calculation, the curve of relation between the calculated value of the open gate water level and the silt height is fitted, and the fitting formula of the opening gate water level is obtained. (4) the finite element model of the flip gate face plate is established by using ANSYS software. The finite element models of siltation and open gate water level at different heights are numerically simulated. It is concluded that the equivalent stress of the door body is caused by the silt deposition and the increase of the opening water level, and the first principal stress and deformation increase in varying degrees. The maximum equivalent stress at the height of 0.4m and 0.8m in front of sluice increases by 5% and 11.8m, respectively, compared with that without silt, which indicates that the increase of silt and water level at the opening gate has a great influence on the equivalent stress of the face slab. The maximum value of the first principal stress at the height of 0.4m and 0.8m increased by 3.0% and 5.8%, respectively, and the maximum displacement increased by 3.6% and 7.0%, respectively, when the silt height was 0.4m and 0.8m, respectively. It can be seen that the first principal stress and deformation of the face slab are also affected by the increase of silt and opening water level. (5) combined with the research results of the paper, Some suggestions are put forward for the study of silt in front of the gate.
【学位授予单位】:西北农林科技大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TV663.8

【参考文献】

相关期刊论文 前10条

1 侯莹;张新燕;徐国栋;;淤沙对水力自控翻板闸门启门水位影响的计算[J];中国农村水利水电;2015年10期

2 韦永贡;;水力自控翻板闸在山区河流中的设计应用[J];水利规划与设计;2014年09期

3 李世永;;翻板闸门在爱河流域水电站工程中的应用[J];东北水利水电;2014年01期

4 黄利忠;;水力自控翻板闸下游冲刷的防治方案探讨[J];陕西水利;2013年06期

5 刘宇;;山区河流上小型拦河闸坝设计的探索[J];水利建设与管理;2013年06期

6 王月华;鲍倩;韩晓维;屠兴刚;;水力自控翻板门数值模拟研究[J];中国农村水利水电;2013年06期

7 李晓庆;唐新军;;新疆引水枢纽闸后消能防冲设计理念的演变[J];水电能源科学;2012年11期

8 徐国宾;高仕赵;訾娟;;淤泥对平面钢闸门启门力影响的计算方法[J];水利学报;2012年09期

9 邓晓君;焦怀金;;水力自动翻板闸门的发展历程及应用[J];北京水务;2012年03期

10 徐国宾;高仕赵;;淤泥对弧形钢闸门启门力影响的计算方法[J];排灌机械工程学报;2012年03期

相关硕士学位论文 前4条

1 吴培军;多泥沙河流水力自控翻板闸门数值模拟及应用研究[D];新疆农业大学;2011年

2 刘长宝;水力自动翻板闸门脉动压力对闸门结构及泄流量的影响分析研究[D];河海大学;2007年

3 赵宇明;高含沙洪水资源利用中的自控闸门的研究[D];内蒙古农业大学;2005年

4 侯石华;水力自动翻板闸门的稳定性分析与结构优化设计[D];河海大学;2004年



本文编号:2068104

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/2068104.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3dfb5***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com