格型钢板桩结构承载机理及数值计算方法研究
本文选题:深厚软土地基 + 格型钢板桩 ; 参考:《天津大学》2016年博士论文
【摘要】:在我国社会、经济发展最活跃的渤海湾沿岸、连云港以南的苏北沿海、长江口、杭州湾、闽江口、珠江口和海南岛西北部等沿岸海域,广泛分布着深厚软弱土地基,给港口与海岸工程建筑物设计带来巨大困难。在软土地基上进行港口与海岸建设是无法回避的问题。采用适合软弱土地基条件的新型海岸工程结构,是目前在软基上建造防波堤和码头的有效手段。格型钢板桩结构由若干单块钢板桩在现场通过锁口连接拼装成圆形、椭圆形或多边形的格体并打入地基后形成,是适用于软弱土地基条件的水工建筑物。然而,相比类似的筒型基础结构,格型钢板桩结构与土之间相互作用更为复杂,承载机理和破坏模式尚不清楚,缺乏可靠的设计与计算方法,限制了格型钢板桩结构的应用。另外,波浪等循环荷载通过堤身、抛石基床和砂质土置换层传递给软土地基的循环应力对软土强度和变形特性的影响及循环荷载作用下软土地基上格型钢板桩防波堤的承载机理、破坏模式和稳定特性等,也是有待解决的问题。本文结合实际工程,以格型钢板桩防波堤和码头为主要研究对象开展一系列的研究工作。主要内容和结论如下:1.针对格型钢板桩结构的几何特性和结构特点,在大型有限元软件ABAQUS上,建立格型钢板桩防波堤结构稳定性及格体环向应力分析的三维静力有限元模型。采用壳体单元模拟薄壁板桩,在相邻板桩之间设置铰接连接器模拟板桩之间的相对转动,并考虑铰接连接器之间的摩擦作用;土体应力应变关系采用Mohr-Coulomb本构模型来模拟,格型钢板桩与其内、外土体之间的滑移、张裂和闭合采用接触面单元模拟。为方便大量数值计算,同时建立不考虑板桩间铰接特性的壳体单元模型和整体的实体单元模型的简化建模方法。并建立格型钢板桩防波堤稳定性分析的有限元加载系数法和码头稳定性分析的有限元强度折减法,以及格体强度有限元分析方法和格内土体剪切变形有限元分析方法。针对工程算例,验证了有限元数值模型对格体环向应力分析以及稳定性分析的准确性。2.针对具体工程算例,系统分析了格型钢板桩防波堤在波浪静力荷载作用下的结构整体位移特性、格仓内土体剪切变形特性、格体内、外土压力分布以及格体环向应力等特性,并研究了格型钢板桩结构在波浪静力作用下的承载机理和破坏模式,为格型钢板桩结构的工程应用和实用设计、计算方法的建立奠定基础。将不考虑板桩之间铰接特性的壳体单元有限元模型和实体单元有限元模型计算结果与考虑板桩之间铰接特性的壳体单元有限元数值模型计算结果进行比较分析,分别探讨格型钢板桩薄壁特性和铰接特性对格型钢板桩防波堤的破坏模式、格仓内土体剪切变形特性、格体内外土压力分布以及格体环向应力等的影响,给出适合实际工程设计的格型钢板桩结构简化建模方法。对格型钢板桩码头开展大量有限元数值模拟,得到格型钢板桩码头的破坏模式,并对格型钢板桩码头的稳定性进行研究。3.对格型钢板桩防波堤数值模型进行模态分析基础上,采用三维弹塑性隐式动力分析步对格型钢板桩结构在波浪循环荷载作用下的整体位移和环向应力等动力响应特性进行分析,建立格型钢板桩防波堤动力稳定性分析方法,并与静力模型结果进行比较,为考虑软土地基循环弱化效应的格型钢板桩结构动力运算奠定基础。4.基于软黏土孔压发展模型和动三轴试验成果,建立了软黏土不排水强度随循环荷载作用次数和动、静应力以及围压水平变化的动力计算模型。基于不排水强度动力计算模型和M-C屈服准则,在大型有限元软件ABAQUS平台上进行二次开发,建立了考虑软土地基不排水强度循环弱化效应的动力有限元法,并对动力有限元法的正确性进行验证。5.基于动力有限元法,建立考虑软土地基循环弱化效应的格型钢板桩结构三维有限元数值分析模型,并建立考虑软基不排水强度循环弱化效应的结构稳定性分析方法。对软土地基在循环荷载下的孔压增长特性、软土不排水强度和变形特性及软土地基上格型钢板桩防波堤结构的承载机理、破坏模式和稳定特性等进行研究,并与静力、拟静力方法计算结果进行对比。6.为方便工程设计人员直接应用,基于有限元分析成果,提出了格型钢板桩防波堤稳定性分析的简化算法。采用有限元方法对无锚板桩码头稳定性计算模型结果进行对比验证,为格型钢板桩码头抗倾稳定性分析的简化设计计算提供依据。针对简化算法适用范围的局限性,建立考虑格型钢板桩码头几何特性、受力机理、转动点位置等因素的极限平衡方法,对抗倾覆稳定性安全系数进行准确计算。结合有限元数值成果并参照现有规范的计算方法,建议了格体内部填料抗剪切变形验算方法,并建立格型钢板桩结构锁口应力验算方法。以上实用设计计算方法具有较高的精度,且相比有限元方法更为简单实用。
[Abstract]:In our country, the most active Bohai bay along the coast of the economy, the coastal waters of North Jiangsu, the Yangtze Estuary, the Hangzhou Bay, the Hangzhou Bay, the Minjiang mouth, the Pearl River mouth and the northwest of Hainan Island are widely distributed in the coastal waters of the south of Lianyungang, and it is very difficult for the design of port and coastal engineering buildings. Construction is an unavoidable problem. It is an effective means to build a new coastal engineering structure suitable for soft ground base conditions. It is an effective means to build a breakwater and a wharf on the soft ground. However, the interaction between the structure and the soil is more complex than the similar cylindrical foundation structure, and the bearing mechanism and failure mode are not clear. The lack of reliable design and calculation methods restrict the application of the structure of the lattice steel sheet pile. In addition, the cyclic loads such as waves pass through. The influence of cyclic stress on soft soil foundation, such as embankment body, riprap bed and sandy soil replacement layer, on soft soil strength and deformation characteristics, and the bearing mechanism, failure mode and stability characteristics of lattice steel sheet pile on soft soil foundation under cyclic loading are also a question to be solved. The main contents and conclusions are as follows: 1. in view of the geometric and structural characteristics of the lattice steel sheet pile structure, on the large finite element software ABAQUS, the three-dimensional static finite element model of the structural stability of the lattice steel sheet pile and the analysis of the circumferential stress of the lattice pile is established. The shell element simulates the thin wall plate pile, and the relative rotation between the plate piles is simulated between the adjacent plate piles, and the friction between the articulated connectors is considered. The stress and strain relationship of the soil is simulated by the Mohr-Coulomb constitutive model. The slip, the crack and the close contact surface between the lattice steel sheet pile and the inner soil and the outer soil are used. In order to facilitate a large number of numerical calculations, the simplified modeling method of the shell element model and the solid element model which does not consider the hinge joint characteristics of the plate pile is established, and the finite element loading coefficient method and the strength reduction method for the stability analysis of the lattice steel sheet pile and the strength reduction method of the stability analysis of the wharf are established, as well as the strength of the lattice. The finite element method of finite element analysis and the finite element analysis method for the shear deformation of the soil soil. According to the engineering example, the finite element numerical model is used to verify the accuracy of the stress analysis of the lattice and the accuracy of the stability analysis.2. for specific engineering examples. The structural overall position of the lattice steel sheet pile breakwater under the action of the wave static load is systematically analyzed. The characteristics of shear deformation, the characteristics of the shear deformation in the silo, the distribution of the internal pressure in the body, the distribution of the outer earth pressure and the cyclic stress of the lattice, and the bearing mechanism and failure mode of the lattice steel sheet pile under the static wave action are studied, which will lay the foundation for the engineering application, the practical design and the establishment of the calculation method for the lattice steel sheet pile structure. The finite element model of the shell element and the finite element model of solid element are compared with the calculation results of the finite element numerical model of the shell element considering the hinge characteristics between the piles and the plate pile, and the failure mode of the lattice steel sheet pile and the hinge characteristics to the breakwater of the lattice pile is discussed respectively. The shear deformation characteristics of soil, the distribution of the internal and external pressure of the body and the ring stress of the lattice, give the simplified modeling method of the lattice steel sheet pile structure suitable for the actual engineering design. A large number of finite element numerical simulation is carried out on the lattice steel sheet pile wharf, and the failure mode of the lattice steel sheet pile wharf is obtained, and the stability of the lattice steel sheet pile wharf is stable. On the basis of the modal analysis of the numerical model of the lattice steel sheet pile breakwater,.3. is used to analyze the dynamic response characteristics of the structural steel sheet pile under the action of wave cyclic loading and the dynamic response characteristics of the lattice steel sheet pile structure under the wave cyclic loading are analyzed, and the dynamic stability analysis of the lattice steel sheet pile is established. In comparison with the static model, the foundation.4. based on the pore pressure development model of soft clay and the dynamic three axis test results are established to calculate the dynamic operation of the lattice steel sheet pile structure with the soft soil cyclic weakening effect. The dynamics of the undrained strength of soft clay with cyclic loading times, dynamic, static stress and confining pressure level are established. Based on the dynamic calculation model of undrained strength and the M-C yield criterion, two times are developed on the ABAQUS platform of large finite element software, and the dynamic finite element method is established to consider the cyclic weakening effect of the undrained strength of the soft soil foundation. The correctness of the dynamic finite element method is verified by the dynamic finite element method based on the dynamic finite element method, and the consideration of the dynamic finite element method is established to consider the dynamic finite element method (.5.). The three-dimensional finite element numerical analysis model of the lattice steel sheet pile structure of soft soil foundation, and the structural stability analysis method considering the cyclic weakening effect of the soft foundation undrained strength, the pore pressure growth characteristic of soft soil foundation under cyclic loading, the undrained strength and deformation characteristics of soft soil and the lattice steel sheet pile on the soft soil foundation The bearing mechanism, failure mode and stability characteristics of the breakwater structure are studied, and compared with the static and pseudo static calculation results,.6. is used for the convenience of engineering designers. Based on the results of the finite element analysis, a simplified algorithm for the stability analysis of the breakwater of the lattice steel sheet pile is proposed. The results of the stability calculation model of the wharf are compared and verified, which provides the basis for the simplified design and calculation of the anti tilt stability analysis of the grid type steel sheet pile wharf. In view of the limitation of the application range of the simplified algorithm, the limit equilibrium method of considering the geometric characteristics, the force mechanism and the position position of the lattice steel plate pile wharf is set up to resist the stability of the overturning stability. The coefficient of sexual safety is calculated accurately. Combining the numerical results of the finite element and the calculation method of the existing specifications, the method of checking the shear deformation of the internal packing of the lattice is proposed, and the method of checking the stress of the lattice plate pile is established. The above practical design method has high accuracy and is simpler and more simple than the finite element method. Use.
【学位授予单位】:天津大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:U656
【相似文献】
相关期刊论文 前10条
1 马明,熊跃飞;钢板桩施工组织设计及技术控制[J];人民长江;2000年11期
2 张海通,张红秀;异形钢板桩现场制作工艺[J];人民长江;2000年12期
3 朱锡昶;李岩;葛燕;胡冠军;史儒雄;麦海;;使用20年岸壁式钢板桩码头的腐蚀与破坏[J];港工技术;2008年02期
4 卢晓斌;;钢板桩的应用与开发[J];铁路采购与物流;2009年09期
5 ;理事单位风采——欧领特钢板桩(中国)有限公司[J];水运工程;2009年12期
6 ;理事单位风采——欧领特钢板桩(中国)有限公司[J];水运工程;2010年08期
7 ;理事单位风采——南京万汇钢板桩有限公司[J];水运工程;2010年08期
8 ;理事单位风采——南京万汇钢板桩有限公司[J];水运工程;2010年12期
9 刘幼如;石守芹;李艳;张大鹏;;我国工程钢板桩应用前景初探[J];中国水运(下半月刊);2011年01期
10 宋焕君;杨景山;刘爱民;;国内钢板桩市场现状与应用前景[J];科技信息;2011年25期
相关会议论文 前10条
1 朱锡昶;李岩;葛燕;胡冠军;史儒雄;麦海;;钢板桩码头的腐蚀破坏检测[A];第十三届中国海洋(岸)工程学术讨论会论文集[C];2007年
2 韩文礼;林竹;;钢板桩涂层防腐应注意的几个问题[A];第十四届中国海洋(岸)工程学术讨论会论文集(下册)[C];2009年
3 孙昕;;堤防实施钢板桩防渗工程施工技术的探讨[A];2002年水利水电地基与基础工程学术会议论文集[C];2002年
4 郑金飞;;钢板桩应用于基坑支护施工技术与效果分析[A];济大学术论丛土木工程2005专辑[C];2005年
5 程展林;饶锡保;;格形钢板桩码头侧向变形分析[A];中国土木工程学会第八届土力学及岩土工程学术会议论文集[C];1999年
6 李浩;蔡惊涛;王立军;刁景华;;热带海洋环境下钢板桩牺牲阳极阴极保护效果的评定[A];第十四届中国海洋(岸)工程学术讨论会论文集(下册)[C];2009年
7 李茂元;;迪拜渔港钢板桩码头的施工[A];施工机械化新技术交流会论文集(第八辑)[C];2007年
8 陈志平;吴浩方;;对钢板桩有关特性参数的初步认识与分析[A];经济发展方式转变与自主创新——第十二届中国科学技术协会年会(第二卷)[C];2010年
9 饶锡保;程展林;徐言勇;;格形钢板桩码头侧向变形离心模型试验研究[A];中国水利学会2007学术年会物理模拟技术在岩土工程中的应用分会场论文集[C];2007年
10 臧悦;桂明明;王俊英;祝晓鸽;;热轧钢板桩国内外应用及开发[A];2012年全国轧钢生产技术会论文集(上)[C];2012年
相关重要报纸文章 前10条
1 傅凯;阿赛洛打入中国钢板桩租赁业[N];北京商报;2007年
2 周辛立;欧领特钢板桩公司正式拓展中国业务[N];中国冶金报;2007年
3 本报首席记者 包斯文;我国钢板桩发展迎来春天[N];中国冶金报;2007年
4 鲁岑雯邋包斯文;我国钢板桩潜在市场巨大[N];建筑时报;2007年
5 ;我国钢板桩潜在年需求可超50万吨[N];世界金属导报;2008年
6 斯文;钢板桩潜在市场巨大[N];中华建筑报;2008年
7 鲁岑雯;钢板桩50年后可回收利用[N];建筑时报;2008年
8 本报首席记者 包斯文;拉动内需,钢板桩大有用武之地[N];中国冶金报;2008年
9 本报记者 张明;钢板桩推广应用值得关注[N];中国冶金报;2008年
10 记者 李思颖;多项重点工程用上南京造钢板桩[N];南京日报;2009年
相关博士学位论文 前1条
1 焉振;格型钢板桩结构承载机理及数值计算方法研究[D];天津大学;2016年
相关硕士学位论文 前10条
1 傅余;基于ABAQUS的格形钢板桩码头结构数值计算[D];大连海洋大学;2015年
2 刘彭;钢板桩码头在船舶撞击下的安全性分析[D];江苏科技大学;2015年
3 周官封;深水基础围堰施工用钢板桩受力及安全性能分析[D];安徽理工大学;2016年
4 邓刚;姚庄大桥基础施工方案优化设计及受力分析[D];石家庄铁道大学;2016年
5 居鹏飞;基于精益生产船厂钢板物流系统优化研究[D];江苏科技大学;2016年
6 赵志孟;HUC组合钢板桩的受力性能分析及施工措施控制[D];广州大学;2016年
7 杨靓;组合钢板桩(HSW工法)支护结构设计及其工程应用[D];东南大学;2016年
8 范武斌;“钢板桩T型组合体系”稳定性分析与监测研究[D];南京航空航天大学;2016年
9 魏仁明;基于锁口摩擦的钢板桩基坑支护数值模拟分析[D];安徽工业大学;2016年
10 李继才;土锚钢板桩结构计算分析研究[D];河海大学;2004年
,本文编号:2070085
本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/2070085.html