水轮发电机组模型参数辨识与故障诊断方法研究
[Abstract]:With the continuous development of the hydropower industry in China, large hydropower stations have been built and put into operation. The turbine generator sets gradually to large capacity and high water head direction. It is important to ensure the safe and stable operation of the turbine generator set to improve the economic benefits of the power plant and ensure the safety of the power plant and the basin. The operation mechanism of the strong nonlinear and complex giant systems with multi field coupling is not completely clear. The modeling and fault diagnosis of the unit is always the difficult problem in the related research and engineering application. In this context, the system identification theory of the turbine generator set is deeply studied, the modeling of the turbine generator set and the model parameter identification research are carried out. It not only has important theoretical significance and engineering application value for improving the control quality of the turbine generator set, improving the power quality and maintaining the stability of the power system, but also provides theoretical basis and technical support for the fault diagnosis of the turbine generator set. This paper is based on the model parameter identification of the turbine generator set and the fine modeling of the unit. As well as the problems in fault diagnosis, in order to establish a fine turbine generator model and explore advanced fault diagnosis methods, through in-depth analysis of the actual operation characteristics of hydroelectric units, combined with system identification theory, intelligent optimization method and dynamic system identification method, it is suitable for unit control and power system analysis. The model based fault diagnosis method of water turbine generator set is carried out in depth. The modeling theory of Volterra series, generalized frequency response function (GFRF) and nonlinear output frequency response function is introduced, and the model of turbine generator set is established by the method of parameter identification, and the model is used to model the model. The main research contents and innovative achievements of this paper are as follows:1.
(1) the existing hydraulic turbine model is deeply studied, and the applicable scope and advantages and disadvantages of various hydraulic turbine models are summarized and summed up. In view of the problem that the hydraulic loss of the water guide mechanism can not be ignored and the model mechanism is complex, the method of curve fitting is introduced to establish the fine model of the hydraulic turbine which consider the hydraulic loss of the water guide mechanism. It is introduced to the parameter identification of the fine model of the turbine. In order to improve the slow convergence rate and easy to fall into the "local optimum", an improved artificial fish swarm algorithm (IAFSA) is proposed to improve the convergence and accuracy of the algorithm. The proposed method realizes the hydraulic loss curve of the hydraulic turbine refinement model and the water guide mechanism. Step identification.
(2) in order to simplify the network structure of the power system and meet the needs of the analysis of the power system, the equivalent modeling of the small and medium hydropower units is studied. The equivalent model of the five order generator set is set up more suitable for the salient effect of the turbine generator, and a small and medium hydropower cluster based on the study of the data of the multi point PMU measurement data and the contact line data is proposed. The target function is identified by the equivalent model, and the identification strategy is improved to improve the identification efficiency. A large number of simulation tests are carried out by the comprehensive program of the Institute of power science. The results show that the proposed method can effectively solve the problem of multi solution of the equivalent model, and the identification accuracy and identification efficiency are also greatly improved.
(3) the modeling method based on Volterra series is deeply studied. The relationship between the excitation force and the vibration of the rotating machinery system of the turbine generator set is analyzed, and the Volterra model of the system is established. The characteristics of the input quantity of the Volterra time domain model of the rotating machinery system and the shortcomings of the traditional identification method are deeply analyzed, and an improved Volterr is put forward. The identification method of the A-number model improves the identification precision of the Volterra time domain model. At the same time, the fault diagnosis model based on the neural network and the time domain kernel function of the Volterra is constructed according to the characteristics of the Volterra kernel function which can reflect the structure characteristics of the system, and the proposed method is verified by the simulation example and the experimental analysis.
(4) aiming at the problem of the difficulty in monitoring and identifying the state of the turbine runner, a blind identification method based on high order statistics is used to identify the parameters of the time domain Volterra model of the turbine runner. At the same time, the frequency domain form of the Volterra model is discussed, the generalized frequency response model of the turbine wheel is constructed, and the turbine runner is constructed. The generalized frequency response analysis is used to analyze the change of its working condition.
(5) in view of the shortage of fault samples of water turbine generator sets, the problem of the development of the fault diagnosis method is limited. The finite element simulation method is used to model and simulate the fault vibration response of the turbine generator set, and a nonlinear output response function identification method based on the on-line measurement information is proposed. The fault diagnosis system of hydro-generator set is constructed based on linear output function and SVM classifier, and the effective identification of vibration fault of hydro-generator set is realized.
【学位授予单位】:华中科技大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TV734.1;TV738
【相似文献】
相关期刊论文 前10条
1 欧学修;水轮发电机组的选型和制造及安装[J];四川电力技术;2001年03期
2 余小波;“三峡水轮发电机组研制”通过国家级鉴定验收[J];四川水力发电;2001年S1期
3 李海红;水电厂中水轮发电机组的效率监测[J];青海电力;2002年03期
4 阚喜森,黄学斌;浅谈水轮发电机组改造中应用新技术[J];农村电气化;2002年06期
5 张培;水轮发电机组进水受潮后的处理[J];农村电气化;2002年12期
6 ;水轮发电机组值班员(中级、高级)鉴定内容及要求[J];云南电业;2003年02期
7 ;水轮发电机组机械检修工(中级、高级)鉴定内容及要求[J];云南电业;2003年03期
8 ;水轮发电机组局部放电在线监测新技术[J];电网技术;2004年03期
9 牟官华;;水轮发电机组圆形部件的测量与计算分析研究[J];水力发电学报;2007年05期
10 ;利用河水动力发电的水轮发电机组[J];军民两用技术与产品;2010年01期
相关会议论文 前10条
1 赵宏;;基于优化遗传神经网络的水轮发电机组辨识[A];第二十四届中国控制会议论文集(下册)[C];2005年
2 周中建;;浅析水轮发电机组的振动分析与在线监测[A];2006年水力发电学术研讨会论文集[C];2006年
3 曹闻一;;双转轮水轮发电机组的研究与应用[A];中国水利学会2008学术年会论文集(下册)[C];2008年
4 李荣明;涂露;;浅谈提高水轮发电机组推力瓦端面型测温可靠性的方法[A];贵州省电机工程学会2010年优秀论文集[C];2010年
5 魏智民;;喜河水电厂三台水轮发电机组稳定性试验结论及运行对策[A];陕西省水力发电工程学会青年优秀学术论文集[C];2008年
6 丁仁山;;影响新装巨型水轮发电机组安全稳定运行的几个原因及预防措施[A];水轮发电机组稳定性技术研讨会论文集[C];2007年
7 李效旭;郑源;潘虹;;水轮发电机组检修的三维仿真系统研究[A];第十八次中国水电设备学术讨论会论文集[C];2011年
8 李鹏;;浅谈转子一点接地保护在三峡700MW水轮发电机组中的应用[A];中国水力发电工程学会电力系统自动化专委会2009年年会暨学术交流会论文集[C];2009年
9 张贵林;;双排400MW水轮发电机组的运行稳定性[A];水轮发电机组稳定性技术研讨会论文集[C];2007年
10 李宇春;张芳;杨晓焱;余菲;蒋娅;;水轮发电机组部件材料的失效分析研究[A];全国大中型水电厂技术协作网技术交流文集(十三)水电厂改造专集[C];2010年
相关重要报纸文章 前10条
1 顾兆农;首台国产70万千瓦水轮发电机组三峡投产[N];人民日报;2007年
2 ;三峡特大型水轮发电机组国产化取得突破[N];人民日报;2005年
3 韩惠敏邋宋亚平;世界首台70万千瓦水轮发电机组在哈问世[N];工人日报;2007年
4 特约通讯员 刘茂祥;三峡工程首台国产巨型水轮发电机组投产[N];人民长江报;2007年
5 通讯员 严镇威;世界最大水轮发电机组由水电十四局安装完成并试运行[N];云南日报;2007年
6 记者 李冰峰 通讯员 吴健华 李海娟;我市水轮发电机组首次出口北美市场[N];金华日报;2010年
7 孙世岩;自主创新取得丰硕成果 后三峡时代哈电面临新考[N];中国工业报;2005年
8 施勇峰 戴劲松;我国开始步入自主开发制造巨型水轮发电机组时代[N];中国水利报;2005年
9 记者 申明;三峡水电站左岸14号机组开始发电[N];科技日报;2005年
10 杨雄;我国开始步入自主开发制造巨型水轮发电机组时代[N];中国水利报;2006年
相关博士学位论文 前9条
1 白冰;水轮发电机组轴系辨识及振动研究[D];昆明理工大学;2015年
2 夏鑫;水轮发电机组模型参数辨识与故障诊断方法研究[D];华中科技大学;2015年
3 何保华;水轮发电机组转子动平衡数值仿真[D];华中科技大学;2009年
4 乔卫东;水轮发电机组轴系动力特性分析及轴线精度检测方法研究[D];西安理工大学;2006年
5 黄志伟;基于非线性转子动力学的水轮发电机组振动机理研究[D];华中科技大学;2011年
6 阎宗国;基于动载荷识别和数值计算的水轮发电机组稳定性研究[D];中国农业大学;2013年
7 张雷克;水轮发电机组轴系非线性动力特性分析[D];大连理工大学;2014年
8 吕桂萍;水轮发电机组大部件刚强度及动态特性研究[D];沈阳工业大学;2004年
9 刘益剑;水轮发电机组BGNN模型辨识控制及控制器参数优化研究[D];武汉大学;2009年
相关硕士学位论文 前10条
1 刘福秀;考虑动刚度和动强度的水轮发电机组可靠性优化设计方法研究[D];广西大学;2015年
2 尤莉莎;混流式水轮发电机组振动试验及故障诊断[D];河北工程大学;2015年
3 刘洋;基于非线性振动的多失效模式水轮发电机组可靠性研究[D];广西大学;2013年
4 张雪源;水轮发电机组综合指标监测系统[D];大连理工大学;2002年
5 赵蕊;信息融合在水轮发电机组故障诊断系统中的应用研究[D];中南大学;2007年
6 黄凯;水轮发电机组振动特性研究及其应用[D];华中科技大学;2013年
7 姜洋;水轮发电机组轴系统扭转振动研究[D];大连理工大学;2008年
8 周万里;葛洲坝水电厂水轮发电机组主轴动力分析[D];华中科技大学;2009年
9 张强;水电站水轮发电机组效率在线监测系统的开发与研究[D];河海大学;2004年
10 张伟;水轮发电机组轴系统动力学研究[D];大连理工大学;2008年
,本文编号:2165534
本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/2165534.html