当前位置:主页 > 科技论文 > 水利工程论文 >

峡江库区土工检测数据分析及堤防渗流的数值模拟研究

发布时间:2018-08-11 11:06
【摘要】:渗流问题和渗透变形一直是堤防出现险情的重要原因。探讨堤防渗流分析和渗透破坏类型的研究现状及发展过程,对于合理的分析和评价堤防的安全性能、采取合理的防渗措施具有重要参考价值和实践意义。运用智能算法对土工试验中的击实、颗分、比重、液塑限试验参数进行预测分析,将最大干密度、比重、颗分、界限含水率作为模型输入,渗透系数作为模型预测输出,将模型输出值与渗透试验得出的试验值进行对比分析,以验证智能算法对于数据预测中的可行性,可作为渗透系数试验的参考值,也可作为现场无渗透系数试验条件下,工程所需渗透系数的近似值。本文结合峡江库区某防护工程,利用有限元软件分析该防护工程堤防的渗流状况,从而为该防护工程采取的防渗措施提供依据。本文的主要内容如下: 1.介绍峡江库区工程土工试验中的击实、颗分、比重、液塑限、渗透系数等试验方法,通过该土工试验得出的试验参数,作为智能算法预测分析模型中的输入与输出值。 2.针对峡江库区工程中的土工检测数据较少,选取智能算法中专门解决小样本问题的SVM算法,就该土工检测数据进行分析,并与FOAGRNN和BP算法进行对比,以验证SVM算法对于小样本训练的高精度的特性。 3.结合峡江某堤防工程的设计资料,利用有限元软件对该堤防工程进行建模分析,,得出该堤防的渗流状况,根据渗流分析结果,采用相应的防渗措施,并介绍了该堤防工程防渗措施的施工工艺流程以及施工的主要方法。
[Abstract]:Seepage problem and seepage deformation are always the important reasons for the dangerous situation of embankment. This paper discusses the present situation and development process of seepage analysis and seepage failure type of levees, which has important reference value and practical significance for reasonable analysis and evaluation of levee safety performance and taking reasonable seepage prevention measures. The parameters of compaction, particle fraction, specific gravity and liquid-plastic limit test in geotechnical test are predicted and analyzed by intelligent algorithm. The maximum dry density, specific gravity, particle fraction and limit moisture content are taken as the input of the model, and the permeability coefficient is taken as the predicted output of the model. In order to verify the feasibility of the intelligent algorithm in data prediction, the model output value is compared with the experimental value obtained from the permeation test, which can be used as the reference value of the permeability coefficient test, and it can also be used as the field non-permeability coefficient test condition. Approximate value of the required permeability coefficient for engineering. Combined with a protection project in Xijiang reservoir area, the seepage condition of the levee of the protection project is analyzed by using finite element software, thus providing the basis for the seepage prevention measures taken by the protection project. The main contents of this paper are as follows: 1. The test methods of compaction, particle fraction, specific gravity, liquid-plastic limit, permeability coefficient and so on in the geotechnical test of Xijiang reservoir area are introduced, and the test parameters obtained from the geotechnical test are introduced. As the input and output value of intelligent algorithm prediction and analysis model. 2. Aiming at the lack of geotechnical detection data in Xiajiang reservoir area project, the SVM algorithm is selected to solve small sample problem in intelligent algorithm. The geotechnical testing data are analyzed and compared with the FOAGRNN and BP algorithms to verify the high accuracy characteristics of the SVM algorithm for small sample training. 3. Combining with the design data of a dike project in Xiajiang River, Using finite element software to model and analyze the levee project, the seepage condition of the levee is obtained. According to the seepage analysis result, the corresponding seepage prevention measures are adopted. This paper also introduces the construction process and main methods of seepage prevention measures of the levee project.
【学位授予单位】:南昌大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TV223.4;TV871

【参考文献】

相关期刊论文 前10条

1 张莹;潘保芝;;基于主成分分析的SOM神经网络在火山岩岩性识别中的应用[J];测井技术;2009年06期

2 张金泽;单甘霖;;改进的SVM算法及其在故障诊断中的应用研究[J];电光与控制;2006年06期

3 刘一波,屠厚泽,陆文兴;现场量测位移反分析法及在地下工程中的应用[J];地质与勘探;1997年03期

4 肖四喜,李银平;大堤管涌形成机理分析及治理方法[J];工程勘察;2000年03期

5 姜绍飞;张帅;;基于模糊神经网络的数据融合结构损伤识别方法[J];工程力学;2008年02期

6 胡耀波,李鹏,熊惟皓;BP神经网络的实现及应用[J];机械工程材料;2002年06期

7 蔺慧敏;李想;李广会;;堤防渗透变形破坏型式的判别方法[J];黑龙江水利科技;2009年04期

8 詹士昌,徐婕,吴俊;蚁群算法中有关算法参数的最优选择[J];科技通报;2003年05期

9 韩名乾;;堤坝地基土渗透变形类型的判别[J];科技信息;2009年33期

10 王晶;杨懋新;刘金平;;基于PNN神经网络的地震属性反演技术[J];科学技术与工程;2011年27期

相关博士学位论文 前1条

1 殷德胜;岩体渗流与应力分析的数值方法研究[D];武汉大学;2010年



本文编号:2176821

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/2176821.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e70ef***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com