圆柱流致振动数值模拟及其机理研究
[Abstract]:The problem of flow-induced vibration of cylinders exists widely in mechanical engineering, marine engineering and many other fields. However, the problem of flow-induced vibration of cylinders (groups) and its complexity have not yet reached a deep level in academia after decades of research. The study of flow-induced vibration of cylinders (groups) has been carried out to deeply understand the interaction between cylinders and accurately predict the interaction between cylinders. (group) response characteristics, not only have important academic value, but also have important engineering application value for improving the energy conversion coefficient of VIVACE current energy utilization device. In this paper, numerical simulation of cylindrical (group) flow-induced vibration is carried out to understand the mechanism of cylindrical (group) flow-induced vibration. In this paper, the response and wake characteristics of flow-induced vibration of cylinders (groups) are systematically summarized, and the spacing between cylinders is studied and discussed. By comparing the effects of flow-induced vibration of cylinders (groups) and the coupling mechanism between adjacent cylinders, the new phenomena in flow-induced vibration of cylinders (groups) and the physical essence and mechanism behind them are analyzed in depth. When the velocity Ur is greater than 8.0, the mean drag of vortex-induced vibration is smaller than that of the flow around the cylinder. This is due to the fact that the vortex shedding is farther away from the bottom of the cylinder and the 180 jumps of the phase difference between the lift and displacement. 2. The spacing ratio is s/D=2.5. The asymmetry and new hysteresis phenomena of the two cylinders are found for the first time. Further studies show that the asymmetry region and new hysteresis phenomena disappear when the blocking ratio B is greater than 0.08. Eight different wake modes appear in the flow-induced vibration of two parallel cylinders (s/D=2.5 and s/D=5.0), which are irregular, synchronous, anti-synchronous and skewed. In phase, in phase FF, long period in phase FF, heterogeneous FF and mixing mode.4, the coupling mechanism between two cylinders in series with the spacing ratio s/D=1.5 is obviously different from that when the spacing ratio s/D=3.0 and s/D=5.0. When the spacing ratio s/D is greater than 3.0, the response of the upstream cylinder begins to be similar to that of the single cylinder, but in the branching and non-synchronous regions at its lower end There is no hysteresis in the transition interval between the two cylinders, which indicates that the downstream cylinder has more significant influence on the upstream cylinder than the traditional view. The maximum amplitudes of the upstream two cylinders are the same, both of which are Ymax/D=0.56, which is close to the vortex-induced vibration amplitudes of a single cylinder. The maximum amplitudes of the downstream two cylinders are different, respectively, Ymax/D=1.01 and Ymax/D=0.997, which are 77.2% and 74.8% higher than the vortex-induced vibration amplitudes of a single cylinder. There are three asymmetric intervals, namely, the first asymmetric interval (Ur = 4.7-6.07), the second asymmetric interval (Ur = 6.9-7.2) and the third asymmetric interval (Ur = 10.5-50.0). After entering the asymmetric interval, the wake appears to be similar to the wide and narrow wake phenomena in the flow-induced vibration of two parallel cylinders. In short, the basic law of vortex-induced vibration of a single cylinder is studied, and the flow-induced vibration of two parallel and series cylinders is further simulated. The numerical simulation of flow-induced vibration of square-arranged four-cylinder is carried out preliminarily, and the basic flow-induced response, vibration characteristics and wake model are analyzed. The interaction mechanism of flow-induced vibration of cylinder is revealed.
【学位授予单位】:天津大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TV131.2
【相似文献】
相关期刊论文 前10条
1 席志德;陈炳德;李朋洲;;弱耦合体系流致振动计算方法[J];原子能科学技术;2008年S2期
2 叶泉流;王春霖;郎红方;谢建华;;核级换热设备流致振动分析[J];节能技术;2012年04期
3 蒋莉,王建立,沈孟育;有界域轴向流动中棒束流致振动和稳定性研究[J];原子能科学技术;2000年01期
4 蒋莉,王建立,孙成海,沈孟育;有界域轴向流动棒束流致振动附加质量力模型[J];原子能科学技术;1999年05期
5 席志德;陈炳德;李朋洲;;用大涡模拟计算流致振动的流体激励力[J];核动力工程;2007年05期
6 喻丹萍,胡永陶;秦山核电二期工程反应堆堆内构件模型流致振动试验研究[J];核动力工程;2003年S1期
7 崔振东;唐益群;郭长青;闫春岭;;叠层板型堆芯元件模型的流致振动测试[J];振动、测试与诊断;2006年03期
8 毛庆;姜乃斌;;孔板诱发管道流致振动响应的计算方法[J];核动力工程;2009年03期
9 叶奇蓁,张敬才,黄坚持,臧峰刚,刘崇都,何大明,胡正林;秦山核电二期工程反应堆堆内构件流致振动综合评价[J];核动力工程;2003年S1期
10 陆道纲;栾霖;张忠岳;;压水堆吊篮下部防断支承组件流致振动分析[J];核科学与工程;2007年04期
相关会议论文 前6条
1 邱金荣;龚自力;贾臻;;核级换热器流致振动及防振措施研究[A];中国核科学技术进展报告——中国核学会2009年学术年会论文集(第一卷·第3册)[C];2009年
2 蒋自龙;李海宝;袁少波;杨杰;张明强;喻丹萍;钟燕;张泓波;刘勇;;核反应堆堆内构件流致振动试验研究[A];“力学2000”学术大会论文集[C];2000年
3 姜乃斌;毛庆;;孔板诱发管道流致振动响应的计算方法研究[A];中国核动力研究设计院科学技术年报(2009)[C];2011年
4 喻丹萍;马建中;杨杰;胡永陶;;研究堆全堆芯流致振动综合评价[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(上)[C];2007年
5 范晨光;杨翊仁;;叠层板状结构流致振动特性研究[A];中国力学学会学术大会'2005论文摘要集(下)[C];2005年
6 邵传平;鄂学全;魏庆鼎;朱凤荣;;海上结构物流致振动控制方法研究[A];第五届全国水动力学学术会议暨第十五届全国水动力学研讨会文集[C];2001年
相关博士学位论文 前4条
1 王华坤;基于ALE动网格的流固耦合分区算法及其在流致振动分析中的应用[D];上海交通大学;2015年
2 丁林;被动湍流控制下多柱体流致振动研究[D];重庆大学;2013年
3 唐敏;曲管结构的三维流致振动研究[D];华中科技大学;2014年
4 代胡亮;细长结构的流致振动及其俘能研究[D];华中科技大学;2014年
相关硕士学位论文 前8条
1 陈威霖;圆柱流致振动数值模拟及其机理研究[D];天津大学;2014年
2 李恒;不同截面形状柱体流致振动及能量转换特性[D];重庆大学;2015年
3 兰世泉;垂直微结构湍流剖面仪流致振动分析[D];天津大学;2012年
4 黄继露;低雷诺数层流中串列双圆柱流致振动的数值模拟及其机理研究[D];天津大学;2012年
5 杨立红;低雷诺数下串列多圆柱流致振动的数值模拟及其机理研究[D];天津大学;2014年
6 苏子威;铅铋流动界面特性研究[D];华北电力大学;2014年
7 冯娜;流致振动强化平板新风换热器性能的实验研究[D];天津大学;2008年
8 赵钰;基于数值模拟反应堆吊篮的流致振动响应研究[D];西南交通大学;2015年
,本文编号:2206221
本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/2206221.html