可调导叶对低扬程泵装置水力性能影响的数值计算研究
[Abstract]:Low-lift pumping stations play an important role in water transfer, water environment improvement and urban flood control in China. Pump efficiency depends on the efficiency of each component and the smoothness of connection. The guide vane is connected to the upper impeller in the pump device and the outlet passage to the bottom. The original intention of setting the guide vane at the outlet of the pump impeller is to convert the rotational kinetic energy of the water flow into the pressure energy, so as to reduce the hydraulic loss. At present, the guide vane is unadjustable, and the inlet angle of guide vane is determined according to the flow velocity triangle at the outlet of the impeller under the design condition. The design goal of the outlet placement angle of the guide vane should be to obtain the optimal ring quantity of the outlet vane to make the hydraulic performance of the outlet passage optimal, and the optimal ring quantity is related to the flow rate. When the working condition is changed, the flow velocity triangle at the outlet of the impeller and the optimal annular volume corresponding to the outlet passage will change. At this time, the inlet and outlet angle of the guide vane cannot be adjusted, the hydraulic loss will increase, and the efficiency of the pump device will decrease. This paper presents a method to improve the efficiency of pump device by adjusting the inlet and outlet angle of guide vane. In view of the research on the influence of inlet and outlet angle of guide vane on hydraulic performance of pump unit, the main research work of this paper is as follows: 1. The research results of rear guide vane of axial flow pump at home and abroad are summarized and analyzed, and the research on guide vane is made clear. The purpose, significance and main research contents of the effect of outlet placement angle on hydraulic performance of pump unit are summarized and analyzed, and the development status of numerical simulation is summarized and analyzed. The research method and feasibility of this paper are defined. 2. The solid modeling and mesh generation of the axial flow pump device are carried out, and the model simulation of many different grid numbers of the axial flow pump device is carried out, and the mesh independence analysis is carried out. The number of numerical analysis meshes is chosen to ensure that it has no effect on the performance calculation results of axial pump device. On this basis, the different schemes are calculated by using CFD software, and the simulation results are analyzed and studied. Finally, the method of integral adjustment of the guide vane is put forward, and the simulation calculation is carried out at different working conditions. When the guide vane is fixed, the pump device efficiency corresponding to the flow rate of 0.8QdN 0.9QdN 1.0QdU 1.1Qd and 1.2Qd is 72.060.30 / 75.33and 74.9665.59% and 38.84 respectively. When the guide vane is adjusted as a whole, the optimum efficiency under different flow rates is 74.022.81g / 74.96 / 66.20% and 43.2445%, respectively. The integral adjustment of guide vane is helpful to improve the efficiency of pump unit. Taking 0.8Qd and 1.2Qd as examples, the influence of outlet angle of guide vane on the hydraulic performance of outlet passage is analyzed respectively with small flow rate and large flow rate, and the conception of partial regulating guide vane is put forward. It is concluded that when the flow rate is small, different regulation schemes have great influence on hydraulic performance of pump unit. For the optimal pump unit efficiency, the integral adjustment increases 1.96% compared with the fixed guide vane, and the partial adjustment increases 1.16% compared with the integral guide vane, and when the flow rate is large, the integral regulation has a greater influence on the hydraulic performance of the pump device. Compared with the fixed guide vane, the efficiency of the pump device is increased by 4.4 steps, the effect of the partial adjustment is less than that of the whole regulation, and the efficiency of the pump device is only increased by 0.18.
【学位授予单位】:扬州大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TV136.2
【相似文献】
相关期刊论文 前10条
1 王林锁,陈松山,葛强,陈玉明;泵及泵装置效率预测方法研究[J];扬州大学学报(自然科学版);2001年02期
2 张元华;;提高排灌用泵装置效率的主要措施[J];北京节能;1993年06期
3 王林锁,陈松山,陆伟刚,陈玉明,葛强;新型双向平蜗壳流通泵装置特性试验研究[J];扬州大学学报(自然科学版);2000年04期
4 陈松山;严登丰;葛强;周正富;罗惕乾;;泵及泵装置效率换算方法[J];农业机械学报;2006年11期
5 潘光星;何萍;陈松山;何钟宁;周正富;;泵段与泵装置能量特性曲线关系探讨[J];扬州大学学报(自然科学版);2007年04期
6 冯耀忠;;改进的电泵装置[J];石油机械;2008年04期
7 陈松山;;泵装置变速经济运行理论探讨[J];排灌机械;1993年02期
8 王林锁,陆伟刚;泵装置动力特性随转速变化关系的研究[J];排灌机械;1998年02期
9 陈松山,王林锁,陆伟刚,葛强;大型轴流泵站双向流道设计及泵装置特性试验[J];江苏理工大学学报(自然科学版);2001年03期
10 汤方平,李大亮,陈运杰;粒子速度场仪在泵装置内流测量研究中的应用[J];中国农村水利水电;2005年04期
相关会议论文 前3条
1 陈松山;葛强;周正富;严登丰;;泵装置模型试验模拟方法分析[A];2009全国大型泵站更新改造研讨暨新技术、新产品交流大会论文集[C];2009年
2 李彦军;严登丰;袁寿其;;泵及泵装置效率换算方法研究[A];农业机械化与新农村建设——中国农业机械学会2006年学术年会论文集(上册)[C];2006年
3 陈松山;葛强;严登丰;周正富;屈磊飞;;大型泵站竖井进水流道数值模拟与泵装置特性试验研究[A];2009全国大型泵站更新改造研讨暨新技术、新产品交流大会论文集[C];2009年
相关硕士学位论文 前8条
1 白炳国;江都泵站泵装置鱼类通过性计算与分析[D];扬州大学;2016年
2 徐磊;平面S形轴伸泵装置水力特性[D];扬州大学;2017年
3 蒋丽君;泵装置优化设计研究[D];扬州大学;2004年
4 姜楠;双向对称叶轮竖井贯流式泵装置内流动数值模拟[D];扬州大学;2010年
5 陈阿萍;卧式前轴伸泵装置的数值模拟及模型试验研究[D];扬州大学;2007年
6 徐磊;斜式轴伸泵装置水力特性及优化设计研究[D];扬州大学;2009年
7 甄峰;乌江泵站水力模型选择及泵装置模型试验研究[D];扬州大学;2013年
8 周庆连;立式潜水泵装置内部流动和性能预测[D];扬州大学;2014年
,本文编号:2213679
本文链接:https://www.wllwen.com/kejilunwen/shuiwenshuili/2213679.html