一维各向异性海森堡自旋链模型的热力学分析
发布时间:2020-05-30 08:44
【摘要】:U(1)对称性是物理学中重要的对称性之一,它对应于粒子数守恒定律。在物理学中有很多U(1)对称性破缺的精确可解系统,其中一些著名的例子如具有奇数格点的XYZ自旋链、反周期各向异性自旋链和具有非平行边界场的量子自旋链。这些模型的精确解为理解U(1)对称破缺系统提供了重要的基准。近年来,非对角Bethe Ansatz方法的提出使得U(1)对称破缺的一大类可积模型可以被严格求解。基于该方法给出的严格解去分析U(1)对称破缺模型的热力学极限成为了当前的研究热点。另一方面,严格可解的Buck-Sukumar模型(BS模型)在量子光学中具有广泛的应用,是描述场与物质相互作用的基本模型。通过q-玻色子理论对该模型进行推广成为一个很有意义的研究方向。本文主要研究了具有拓扑边界条件的各向异性反周期XXZ模型和q形变的BS模型。自2013年由非对角Bethe Ansatz方法获得反周期XXZ自旋链模型的精确解以来,我们首次基于非齐次Bethe Ansatz方程给出了该模型的热力学极限,并求解了该模型的边界能和第一激发能。第三章中给出了一个系统地求解U(1)对称破缺可积模型热力学极限的方法。首先,通过非对角Bethe Ansatz方法给出该模型的精确解,即相应的转移矩阵的本征值可以由非齐次的T-Q关系来参数化。其次,通过数值模拟来研究系统在有限尺寸时非齐次项对基态能、动量以及高阶守恒荷的贡献。当非齐次项对系统的贡献随着系统尺寸的增大而趋向于零时,可以将非齐次项抹掉使得非齐次T-Q关系退化为通常形式的T-Q关系。由退化T-Q关系的解析性可以得到退化的Bethe Ansatz方程,其仍然可以用来描述热力学极限下的反周期XXZ模型。最后,通过热力学Bethe Ansatz方法求解该模型的热力学极限,并得到了该模型的边界能和第一激发能等。通过比较周期XXZ模型的热力学性质,分析了反周期边界条件对模型的影响。本文中使用的方法同样可以处理其他由非对角Bethe Ansatz方法精确求解的可积模型。BS模型是量子光学中的基本模型。在本文中,我们提出了一个严格可解的q形变的BS模型。该推广的BS模型是通过将q形变代数替换BS模型中的玻色子代数得到的,其需要引入形变参数q和Bargmann参数s。通过q形变的Holstein-Primakoff变换,使得该q形变的BS模型可以由量子代数su_q(1,1)"晄u(2)来描述。为了研究玻色子场q形变的物理意义,我们以q形变Glauber相干态为初始态研究了原子反转和von Neumann熵随时间的演化。
【学位授予单位】:西北大学
【学位级别】:博士
【学位授予年份】:2019
【分类号】:O414.1
【学位授予单位】:西北大学
【学位级别】:博士
【学位授予年份】:2019
【分类号】:O414.1
【相似文献】
相关期刊论文 前10条
1 叶春松;高压氧弹内热力学极限状态[J];武汉水利电力学院学报;1992年05期
2 董道;;突破聚光度的“热力学极限”[J];太阳能;1992年01期
3 张志远;互为热平衡的系统是否一定有相同的温度──如何正确理解热平衡定律[J];四川师范大学学报(自然科学版);1996年06期
4 道格拉斯·福克斯;志兰;;人类不能再聪明了[J];中外文摘;2013年15期
5 苏国珍;陈金灿;;理想量子气体的尺度效应[J];大学物理;2010年02期
6 陈红岩,陈捷,金萍,邢建国,严兆大;喷雾的格子气模型及其数值模拟研究[J];燃烧科学与技术;1998年02期
7 袁都奇;;囚禁有限unitary费米气体的热力学性质[J];物理学报;2016年18期
8 王睿婕;;基于混合连边机制的网络演化和渗流相变研究[J];现代信息科技;2018年02期
9 马秀清,王戍堂;广义数在量子统计学中的应用[J];西北大学学报(自然科学版);1983年01期
10 王厉;李念平;;空调系统中热湿处理过程的,
本文编号:2687887
本文链接:https://www.wllwen.com/kejilunwen/wulilw/2687887.html