当前位置:主页 > 科技论文 > 信息工程论文 >

结合自适应波束形成的NUFFT二维成像算法

发布时间:2021-09-23 17:46
  研究推导了安检系统近场信号传播方程,并引入了一维近场响应矩阵,在此基础上,提出了结合LMS(Least Mean Square,LMS)自适应波束形成的非均匀快速傅里叶变换(Non-uniform Fast Fourier Transform,NUFFT)二维近场成像算法。先对多阵元接收信号进行自适应波束形成处理,再通过NUFFT重构目标图像。对文中算法与传统的波束形成NUFFT二维成像算法进行了模拟仿真比较分析,仿真结果表明,提出的算法具有更好的噪声抑制效果,提高了毫米波近场成像的质量。 

【文章来源】:光电子技术. 2020,40(02)北大核心

【文章页数】:6 页

【部分图文】:

结合自适应波束形成的NUFFT二维成像算法


二维安检成像阵列结构

过程图,近场,天线,过程


天线传播过程如图2所示:由图2看出,假设信源信号为s,以传播距离r=2D2/λ将传播过程分为近场和远场传播,其中λ为信源信号工作波长,D为阵列最大孔径,r为信源信号至天线阵列中心阵元的距离,天线阵元在近场环境下接收端的信号是球面波,在近场模型下,信源至天线阵列的各个天线的传播距离r各不相等,各天线阵元的接收相位也有差异,因此,天线阵元接收到的信号随接收相位和信源与接收天线之间间距变化而变化,接收信号方程推导如下:

模型图,天线阵列,模型,信源


假设天线阵列中有阵元P个,选取中心阵元为参考阵元,建立二维坐标系,天线阵列均匀分布在x轴两侧,阵元的坐标分别为x1x2x3x4?xp,信源信号s相对于中心阵元的坐标为(rs,θs),如图3所示。当把中心阵元作为参考原点时,各个天线阵元与信源信号的间距是rs,θs的函数,第m个天线阵元到信源信号s的距离为dm,s(rs,θs),由余弦定理可知,第m个天线阵元到信源信号的距离为:

【参考文献】:
期刊论文
[1]基于比幅分区法的室内定位技术研究与应用[J]. 姜振宇,袁瑞铭,鲁观娜,李文文,王晨,吕言国,李光远.  电测与仪表. 2018(S1)
[2]主动式毫米波成像系统对不同材料反射特性分析[J]. 芦少北,李世勇,敬汉丹,郑海涛,孙厚军.  微波学报. 2018(S2)
[3]基于自适应算法的谐波检测方法研究[J]. 彭咏龙,张坤锋,李亚斌,杨朋凯,黄江浩.  电测与仪表. 2018(09)
[4]联合波束域分解和SVD的多用户大规模MIMO系统信道估计[J]. 周乔,许魁,徐友云,谢天怡.  信号处理. 2018(04)
[5]一种改进的主动式近场毫米波成像算法[J]. 何丰,陈艺,曹清亮,刘杰.  现代电子技术. 2018(07)
[6]有限量化精度移相器对毫米波平面相阵波束控制性能的影响[J]. 唐俊林,岳光荣,曾媛,李少谦,李强.  信号处理. 2017(09)
[7]60 GHz毫米波通信中贪婪迭代的波束成形方法[J]. 唐俊林,曾媛,岳光荣,李少谦.  信号处理. 2017(05)
[8]基于自适应增益LMS算法的谐波检测新方法[J]. 刘建华,周万鹏,钱红稳,赵世杰.  电测与仪表. 2014(10)



本文编号:3406141

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/3406141.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户64e8b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com