一类非线性二阶差分方程Robin问题多个正解的存在性
发布时间:2018-07-27 17:34
【摘要】:用不动点指数理论,考虑一类非线性二阶差分方程Robin问题{-△~2u(t-1)=λf(u(t)),t∈Z[1,T-1],△u(0)=0,u(T)=0多个正解的存在性,其中:Z[1,T-1]={1,2,…,T-1};f:[0,∞)→[0,∞)为连续函数且有多个零点;λ0为参数在一定的假设条件下,讨论其非线性项零点数与问题解数之间的关系.
[Abstract]:By using the fixed point exponent theory, we consider the existence of more than 0 positive solutions for a class of nonlinear second-order difference equation Robin problems {-n2u (t-1) = 位 f (u (t) t 鈭,
本文编号:2148630
[Abstract]:By using the fixed point exponent theory, we consider the existence of more than 0 positive solutions for a class of nonlinear second-order difference equation Robin problems {-n2u (t-1) = 位 f (u (t) t 鈭,
本文编号:2148630
本文链接:https://www.wllwen.com/kejilunwen/yysx/2148630.html