Hausdorff算子在加权Hardy空间上的有界性
发布时间:2021-10-22 10:08
本文主要研究Hausdorff算子在加权Hardy空间上的有界性,得到Hausdorff算子在加权Hardy空间上有界的充分条件.这个条件改进了已知定理的结论,并在尺度意义下是最佳的.本论文共分为三章:第一章为绪论,介绍了 Hausdorff算子的发展历程,并给出了本文的主要结果.第二章为预备知识,回顾Ap权的定义和性质,以及加权Hardy空间的定义,最后给出了本文中要用到的一些引理.第三章为主要定理的证明,通过加权Hardy空间的原子分解和Riesz变换,完成了主要定理的证明.
【文章来源】:浙江师范大学浙江省
【文章页数】:40 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
第一章 绪论
1.1 研究背景及其现状
1.2 本文的主要结果
第二章 预备知识
2.1 A_p权
2.2 H_w~p的原子刻画
第三章 主要定理的证明
3.1 算子的分解
3.2 Ⅰ_j的估计
3.3 Ⅲ_j的估计
3.4 Ⅱ_j的估计
参考文献
攻读学位期间取得的研究成果
致谢
【参考文献】:
期刊论文
[1]Hausdorf operators on Euclidean spaces[J]. CHEN Jie-cheng,FAN Da-shan,WANG Si-lei. Applied Mathematics:A Journal of Chinese Universities(Series B). 2013(04)
[2]Hausdorff Operators on Function Spaces[J]. Jiecheng CHEN1 Dashan FAN2 Jun LI3 1Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China; Department of Mathematics, Zhejiang University, Hangzhou 310027, China.2Department of Mathematics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA. 3Department of Mathematics, Zhejiang University, Hangzhou 310027, China.. Chinese Annals of Mathematics(Series B). 2012(04)
[3]Characterization for commutators of n-dimensional fractional Hardy operators[J]. Zun-wei FU~(1,2) Zong-guang LIU~3 Shan-zhen LU~(1+) Hong-bin WANG~3 ~1 School of Mathematical Sciences,Beijing Normal University,Beijing 100875,China;~2 Department of Mathematics,Linyi Normal University,Linyi 276005,China;~3 Department of Mathematics,China University of Mining and Technology (Beijing),Beijing 100083,China. Science in China(Series A:Mathematics). 2007(10)
本文编号:3450883
【文章来源】:浙江师范大学浙江省
【文章页数】:40 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
第一章 绪论
1.1 研究背景及其现状
1.2 本文的主要结果
第二章 预备知识
2.1 A_p权
2.2 H_w~p的原子刻画
第三章 主要定理的证明
3.1 算子的分解
3.2 Ⅰ_j的估计
3.3 Ⅲ_j的估计
3.4 Ⅱ_j的估计
参考文献
攻读学位期间取得的研究成果
致谢
【参考文献】:
期刊论文
[1]Hausdorf operators on Euclidean spaces[J]. CHEN Jie-cheng,FAN Da-shan,WANG Si-lei. Applied Mathematics:A Journal of Chinese Universities(Series B). 2013(04)
[2]Hausdorff Operators on Function Spaces[J]. Jiecheng CHEN1 Dashan FAN2 Jun LI3 1Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China; Department of Mathematics, Zhejiang University, Hangzhou 310027, China.2Department of Mathematics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA. 3Department of Mathematics, Zhejiang University, Hangzhou 310027, China.. Chinese Annals of Mathematics(Series B). 2012(04)
[3]Characterization for commutators of n-dimensional fractional Hardy operators[J]. Zun-wei FU~(1,2) Zong-guang LIU~3 Shan-zhen LU~(1+) Hong-bin WANG~3 ~1 School of Mathematical Sciences,Beijing Normal University,Beijing 100875,China;~2 Department of Mathematics,Linyi Normal University,Linyi 276005,China;~3 Department of Mathematics,China University of Mining and Technology (Beijing),Beijing 100083,China. Science in China(Series A:Mathematics). 2007(10)
本文编号:3450883
本文链接:https://www.wllwen.com/kejilunwen/yysx/3450883.html