超前倒向随机微分方程及其应用研究
发布时间:2021-12-16 20:42
倒向随机微分方程(BSDE)的一般形式最先由Pardoux-Peng[30]在1990年提出。从此,BSDE的理论研究受到了广泛的关注,这是由于它在很多方面有着广泛的应用,比如在定价和对冲理论中的应用、在(随机)偏微分方程中的应用、在随机控制和微分对策中的应用,等等。比较定理是BSDE理论中的一大重要成果,这归因于Peng[36],然后由Pardoux-Peng[31]和El Karoui-Peng-Quenez[17]做了推广。当我们可以比较两个BSDEs的终端条件和生成元时,我们可以用比较定理来比较这两个倒向随机微分方程解的大小。Yang[46](也可参见Peng-Yang[40])在2007年研究了一种新类型的倒向随机微分方程,称为超前倒向随机微分方程(ABSDEs)。他们主要研究了此类方程的解的存在唯一性,解的比较定理,同时应用这些结果解决了相关的随机控制问题。在这篇论文中,我们主要研究了超前倒向随机微分方程及其应用。首先我们用线性化方法证明了Peng-Yang[40]中的比较定理,并且给出了 一个更一般的结果。其次,当超前倒向随机微分方程的超前时不再是常数而是一个关于时间的函...
【文章来源】:南京师范大学江苏省 211工程院校
【文章页数】:56 页
【学位级别】:硕士
【文章目录】:
Abstract (in English)
Abstract (in Chinese)
Chapter 1 Introduction
1.1 Background
1.2 The main content of this article
Chapter 2 Preliminaries
2.1 Results on BSDEs
2.2 Results on anticipated BSDEs
Chapter 3 Comparison theorems for 1-dimensional anticipated BSDEs
3.1 A new proof of the comparison theorem
3.2 A more general comparison theorem
Chapter 4 Anticipated BSDEs with functional anticipated time and relatedstochastic control problems
4.1 Duality between SDDEs and anticipated BSDEs
4.2 Application in stochastic control problems
Chapter 5 Anticipated BSDEs under a weaker condition and related zero-sum stochastic differential games
5.1 Anticipated BSDEs under a weaker condition
5.2 Zero-sum stochastic differential games
Bibliography
Acknowledgements
【参考文献】:
期刊论文
[1]A General Comparison Theorem for 1-dimensional Anticipated BSDEs[J]. Xiao-ming XU. Acta Mathematicae Applicatae Sinica. 2016(02)
[2]超前倒向重随机微分方程[J]. 张峰. 中国科学:数学. 2013(12)
[3]Necessary and sufficient condition for the comparison theorem of multidimensional anticipated backward stochastic differential equations[J]. XU XiaoMing School of Mathematical Sciences, Nanjing Normal University, Nanjing 210046, China. Science China(Mathematics). 2011(02)
本文编号:3538787
【文章来源】:南京师范大学江苏省 211工程院校
【文章页数】:56 页
【学位级别】:硕士
【文章目录】:
Abstract (in English)
Abstract (in Chinese)
Chapter 1 Introduction
1.1 Background
1.2 The main content of this article
Chapter 2 Preliminaries
2.1 Results on BSDEs
2.2 Results on anticipated BSDEs
Chapter 3 Comparison theorems for 1-dimensional anticipated BSDEs
3.1 A new proof of the comparison theorem
3.2 A more general comparison theorem
Chapter 4 Anticipated BSDEs with functional anticipated time and relatedstochastic control problems
4.1 Duality between SDDEs and anticipated BSDEs
4.2 Application in stochastic control problems
Chapter 5 Anticipated BSDEs under a weaker condition and related zero-sum stochastic differential games
5.1 Anticipated BSDEs under a weaker condition
5.2 Zero-sum stochastic differential games
Bibliography
Acknowledgements
【参考文献】:
期刊论文
[1]A General Comparison Theorem for 1-dimensional Anticipated BSDEs[J]. Xiao-ming XU. Acta Mathematicae Applicatae Sinica. 2016(02)
[2]超前倒向重随机微分方程[J]. 张峰. 中国科学:数学. 2013(12)
[3]Necessary and sufficient condition for the comparison theorem of multidimensional anticipated backward stochastic differential equations[J]. XU XiaoMing School of Mathematical Sciences, Nanjing Normal University, Nanjing 210046, China. Science China(Mathematics). 2011(02)
本文编号:3538787
本文链接:https://www.wllwen.com/kejilunwen/yysx/3538787.html