拓扑动力系统中的混沌和Szemeredi型定理
发布时间:2022-01-16 15:21
众所周知混沌是拓扑动力系统的研究热点之一,而Devaney混沌,Li-Yorke混沌则是最为流行的混沌的定义。自1977年Furstenberg给出了 Szemeredi定理的动力系统证明之后,用遍历论的方法研究组合问题也成为遍历论的研究重点之一。在本文中,我们主要研究了群或半群作用下的拓扑动力系统中的Devaney混沌和Li-Yorke混沌,另外用遍历论的方法证明了一些Szemeredi 型定理。全文一共分为四章。在第一章中,我们主要给出了本文的主要结果和预备工作。在第二章中,我们介绍了群或半群作用下的拓扑动力系统中的Devaney混沌,Li-Yorke混沌的概念,引进了多重混沌和多重Li-Yorke混沌的概念,得到了一些Devaney混沌蕴含Li-Yorke混沌的结果。特别地,设R+(?)π X是Polish空间上的C0-半流,我们证明了:●如果R+(?)π X是拓扑传递的,至少有一个周期点p,并且有一个内点为空的稠密轨道,那么它是多重Li-Yorke混沌的;即存在一个不可数集(?)(?)X使得对任何k≥ 2和任何不同的点x1,...xk∈(?),我们可以找到时间序列sn→∞,tn...
【文章来源】:南京大学江苏省 211工程院校 985工程院校 教育部直属院校
【文章页数】:80 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Chapter 1 Preface
1.1 Background and main results
1.2 Basic notions and preliminaries
Chapter 2 Devaney and Li-Yorke chaos for topological dynamics
2.1 Introduction
2.2 Dcvancy chaos. Li-Yorke chaos and Multi-dimensional chaos
2.3 Devaney chaos implies Li-Yorke chaos
Chapter 3 Chaos of topologically weakly-mixing dynamics
3.1 Basic properties of weakly-mixing
3.2 Multi-dimensional Li-Yorke chaos of weakly-mixing dynamics
3.3 Li-Yorke chaotic sets of weakly-mixing dynamics
Chapter 4 Szemeredi-type theorems for subsets of locally compactabelian groups of positive upper Banach density
4.1 Introduction
4.2 F(?)lner sequences and upper density
4.3 Furstenberg correspondence principle
REFERENCES
Papers published during my PhD program
致谢
【参考文献】:
期刊论文
[1]On Galvin’s theorem for compact Hausdorff right-topological semigroups with dense topological centers[J]. DAI XiongPing,LIANG HaiLan. Science China(Mathematics). 2017(12)
[2]Recent Development of Chaos Theory in Topological Dynamics[J]. Jian LI,Xiang Dong YE. Acta Mathematica Sinica. 2016(01)
本文编号:3592926
【文章来源】:南京大学江苏省 211工程院校 985工程院校 教育部直属院校
【文章页数】:80 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Chapter 1 Preface
1.1 Background and main results
1.2 Basic notions and preliminaries
Chapter 2 Devaney and Li-Yorke chaos for topological dynamics
2.1 Introduction
2.2 Dcvancy chaos. Li-Yorke chaos and Multi-dimensional chaos
2.3 Devaney chaos implies Li-Yorke chaos
Chapter 3 Chaos of topologically weakly-mixing dynamics
3.1 Basic properties of weakly-mixing
3.2 Multi-dimensional Li-Yorke chaos of weakly-mixing dynamics
3.3 Li-Yorke chaotic sets of weakly-mixing dynamics
Chapter 4 Szemeredi-type theorems for subsets of locally compactabelian groups of positive upper Banach density
4.1 Introduction
4.2 F(?)lner sequences and upper density
4.3 Furstenberg correspondence principle
REFERENCES
Papers published during my PhD program
致谢
【参考文献】:
期刊论文
[1]On Galvin’s theorem for compact Hausdorff right-topological semigroups with dense topological centers[J]. DAI XiongPing,LIANG HaiLan. Science China(Mathematics). 2017(12)
[2]Recent Development of Chaos Theory in Topological Dynamics[J]. Jian LI,Xiang Dong YE. Acta Mathematica Sinica. 2016(01)
本文编号:3592926
本文链接:https://www.wllwen.com/kejilunwen/yysx/3592926.html