活性污泥数学模型ASM1及ASM3在MBR和DE型氧化沟中的应用研究
本文关键词:活性污泥数学模型ASM1及ASM3在MBR和DE型氧化沟中的应用研究,,由笔耕文化传播整理发布。
我国已建高速公路沿线服务区和收费站大多都建设了以生物处理为主要单元的污水处理设施,其生物处理工艺包括接触氧化法、活性污泥法、生物膜法、序批式反应器(SBR)等,科学合理地模拟和监控这些污水处理设施的运行对保障出水水质稳定达标及节约运行成本具有重要意义。在世界范围内,利用数学模型对活性污泥工艺进行模拟已成为当今污水厂设计和运行控制的重要内容。国外关于这方面的研究很多,并产生不少的模型,国际水协(International Water Association, IWA)ASM(Activated Sludge Models)模型的推出,在国际上引起了广泛关注并成为研究热点。本论文回顾了活性污泥数学模型由Monod模式、Eckenflder模型、McKinney模型、Lawrence-McCarty模型到Andrews模型、WRc模型、IWA的ASM模型的发展历程及活性污泥数学模型在国内外的应用现状,并对污水处理系统的计算机模拟软件SSSP、EFOR、GPS-X、WEST进行了简要介绍。建立了污水生物处理完全混合系统(CSTR)在“异养菌好氧生长及衰减(内源呼吸)过程”,“有机物水解、异养菌好氧生长及衰减(内源呼吸)过程”,“有机物水解、异养菌和自养菌好氧生长及衰减(内源呼吸)过程”三种简化形式下的ASM1和ASM3稳态模型,利用MATLAB编制程序,得到了“有机物水解、异养菌好氧生长及衰减(内源呼吸)过程”简化形式下的各组分解析解,并实现了对“异养菌好氧生长及衰减(内源呼吸)过程”、“异养菌好氧生长及衰减(内源呼吸)过程”两种简化形式下的模拟。采用一体式膜生物反应器(MBR)、人工配制污水模拟高速公路服务区生活污水浓度,对水力负荷变化及污水处理效果进行了为期4个月的试验研究。按照IWA关于污水水质划分的新原则,对试验进水水质进行了组分分析,针对一体式膜生物反应器在不排泥和不同水力停留时间的动态过程,构建了基于ASM1和ASM3的膜生物反应器动态模型,利用MATLAB编制程序,对一体式膜生物反应器试验数据进行了模拟,根据最小二乘法原理获得了试验条件下的一组最佳参数估计值。针对DE型氧化沟周期性运行的动态过程,对“厌氧选择池+DE型氧化沟+终沉池”系统,将一个周期的反应过程分成4个阶段,构建了基于ASM1和ASM3的DE型氧化沟动态模型,利用MATLAB编制程序,在典型参数值下对DE型氧化沟实测数据进行了模拟分析。本论文得出以下结论:(1)“有机物水解、异养菌好氧生长及衰减(内源呼吸)过程”简化形式下的ASM1和ASM3稳态模型反映出如下规律:出水易生物降解基质浓度随着污泥龄(SRT)的增加而锐减,并逐渐趋于稳定;微生物量随着SRT的增加而不断增加,并逐渐趋于稳定;慢速可生物降解基质浓度随着SRT的增加而锐减,并逐渐趋于稳定;惰性颗粒性有机物和混合液悬浮固体浓度(MLSS)随着SRT的增加而不断增加;活性比例随着SRT的增加而锐增,之后不断减少;需氧量随着SRT的增加而不断增加,并逐渐趋于稳定。(2) ASM1模型应用于一体式膜生物反应器,其COD模拟值对参数变化的灵敏度依次为bH、KS、(μ|^)H,NH4-N模拟值对参数变化的灵敏度依次为(μ|^)A、bA、KNH,NOx-N模拟值对参数变化的灵敏度依次为YH, iXB, fP,bH, YA, (μ|^)A, bA, (μ|^)H, KNH, KS。(3) ASM3模型应用于一体式膜生物反应器,其COD模拟值对参数变化的灵敏度依次为YSTO,O2、YH,O2、fSI、bH,O2、KS、kSTO,NH4-N模拟值对参数变化的灵敏度依次为(μ|^)A, bA,O2, KA,NH4, NOx-N模拟值对参数变化的灵敏度依次为YA, YSTO,O2, YH,O2, bH,O2。(4)一体式膜生物反应器动态模拟结果显示,在本试验条件下,ASM1与ASM3模型的COD模拟效果基本相同,ASM3模型的NH4-N、NOx-N模拟效果优于ASM1模型,就总体模拟效果而言,ASM3模型优于ASM1模型。(5) ASM1模型应用于DE型氧化沟,其COD模拟值对参数变化的灵敏度依次为bH、bA、KS、(μ|^)H、YH、kh、fP、KNO、YA、ηg、iXB、KNH、(μ|^)A、ηh、KX,NH4-N模拟值对参数变化的灵敏度依次为ηh, KS, bA, fP, KNO, (μ|^)A, YA,ηg, kh, KNH, (μ|^)A, iXB, YH, KX, bH, NOx-N模拟值对参数变化的灵敏度依次为ηh、KS、bA、YH、fP、KNO、(μ|^)H、YA、ηg、kh、iXB、KNH、(μ|^)A、KX、bH。(6) ASM3模型应用于DE型氧化沟,其COD模拟值对参数变化的灵敏度依次为fSI, kSTO, KS, bH,O2, YSTO,O2, YH,O2, NH4-N模拟值对参数变化的灵敏度依次为(μ|^)H、KA,NH4, bA,O2, YSTO,O2, YH,O2, bH,O2, bA,NOx,ηNOx, kh, KX, NOx-N模拟值对参数变化的灵敏度依次为YA、YSTO,O2、YH,O2、bH,O2、ηNOx、kSTO、YSTO,NOx、bSTO,O2、(μ|^)H、(μ|^)H、KSTO、KA,NH4、YH,NOx、KS、bH,NOx、bSTO,NOx。(7) DE型氧化沟ASM3模型在典型参数下的COD、NH4-N、NOx-N模拟结果变化趋势与实际过程相吻合,DE型氧化沟ASM3模型在典型参数下的模拟效果总体上优于ASM1模型在典型参数下的模拟效果。
There are lots of biological wastewater treatment equipments in service areas of express highway in our country. The biological processes include biological contact oxidation, activated sludge, Membrane Bioreactor (MBR) and Sequencing Batch Reactor (SBR). Scientifically and rationally simulating and controlling of these wastewater treatment processes will not only assure effluents achieve the standards stably, but also lower the operation cost.Modeling of activated sludge process has become a common part of design and operation of wastewater treatment plants all over the world. There are several researches overseas, and some models have been pushed out. Introduction of ASMs has spurred and focused research internationally.From Monod mode, Eckenflder mode, McKinney mode, Lawrence-McCarty mode to Andrews mode, WRc mode and ASMs are reviewed, applications of activated sludge models at home and abroad are presented. Computer simulators SSSP, EFOR, GPS-X and WEST are also introduced.In three situations within Continuous Stirred-Tank Reactor (CSTR) as‘heterotrophic bacteria’s growth and decay under aerobic conditions’,‘hydrolysis & heterotrophic bacteria’s growth and decay under aerobic conditions’,‘hydrolysis & heterotrophic bacteria and autotrophic bacteria’s growth and decay under aerobic conditions’, stable-state models based on ASM1 and ASM3 are set up. Analytical solutions are achieved in situation of‘hydrolysis & heterotrophic bacteria’s growth and decay under aerobic conditions’, simulations are made with default inlet data and parameters to the two former situations by MATLAB program.As to the artificial wastewater similar with domestic sewage, an experiment of submerged membrane bioreactor has been taken during the last 4 months under different HRTs and temperatures. According to IWA’s new division principle of organic components, the organic components of artificial wastewater are measured. Transient-state models based on ASM1 and ASM3 are established, simulations are taken by MATLAB program, and a best group of parameters under the experiment condition is found with least square method. Because of the special periodic operation mode of DE oxidation ditch, an operation period is divided into 4 stages, and transient-state models based on ASM1 and ASM3 are established to the system‘Anaerobic Selection Tank + DE Oxidation Ditch + Final Sedimentation Tank’. Simulations are made with default parameters by MATLAB program.The conclusions are achieved as follows:(1) Simulations of stable-state models of CSTR based on ASM1 and ASM3 in‘hydrolysis & heterotrophic bacteria’s growth and decay under aerobic conditions’show that effluent SS falls sharply when SRT increases, and then becomes stable. XB,M increases with SRT, then becomes stable. XS falls sharply when SRT increases, and then becomes stable. XI and MLSS increase with SRT. Activity proportion increases sharply when SRT increases, and then decreases continuously. Oxygen demand increases with SRT and then becomes stable.(2) Sensitivity analysis of MBR model based on ASM1 shows that simulation of COD is sensitive to bH, KS, (μ|^)H, NH4-N is sensitive to (μ|^)A, bA, KNH, NOx-N is sensitive to YH, iXB, fP, bH, YA, (μ|^)A, bA, (μ|^)H, KNH, KS.(3) Sensitivity analysis of MBR model based on ASM3 shows that simulation of COD is sensitive to YSTO,O2、YH,O2、fSI、bH,O2、KS、kSTO,NH4-N is sensitive to (μ|^)A, bA,O2, KA,NH4, NOx-N is sensitive to YA, YSTO,O2, YH,O2, bH,O2.(4) Simulations to stable-states models of MBR show that under the experiment condition, ASM1 and ASM3 have the same effect in COD simulation, but ASM3 is better than ASM1 in NH4-N and NOx-N simulations, and ASM3 has a better simulation effect than ASM1 conclusively.(5) Sensitivity analysis of DE Oxidation Ditch model based on ASM1 shows that simulation of COD is sensitive to bH、bA、KS、(μ|^)H、YH、kh、fP、KNO、YA、ηg、iXB、KNH、(μ|^)A、ηh、KX,NH4-N is sensitive toηh, KS, bA, fP, KNO, (μ|^)A, YA,ηg, kh, KNH, (μ|^)A, iXB, YH, KX, bH, NOx-N is sensitive toηh、KS、bA、YH、fP、KNO、(μ|^)H、YA、ηg、kh、iXB、KNH、(μ|^)A、KX、bH.(6) Sensitivity analysis of DE Oxidation Ditch model based on ASM3 shows that simulation of COD is sensitive to fSI, kSTO, KS, bH,O2, YSTO,O2, YH,O2, NH4-N is sensitive to (μ|^)H, KA,NH4, bA,O2, YSTO,O2, YH,O2, bH,O2, bA,NOx,ηNOx, kh, KX, NOx-N is sensitive to YA、YSTO,O2、YH,O2、bH,O2、ηNOx、kSTO、YSTO,NOx、bSTO,O2、(μ|^)H、(μ|^)H、KSTO、KA,NH4、YH,NOx、KS、bH,NOx、bSTO,NOx.(7) Simulations with default parameters to transient-state models of DE Oxidation Ditch show that COD, NH4-N and NOx-N of ASM3 are changing in conformity with practical situation. Conclusively, ASM3 has a better simulation effect than ASM1 as far as DE Oxidation Ditch is concerned.
活性污泥数学模型ASM1及ASM3在MBR和DE型氧化沟中的应用研究 摘要4-7Abstract7-9第一章 绪论13-15 1.1 研究背景13-14 1.2 研究内容14 1.3 研究意义14-15第二章 活性污泥数学模型的发展与应用现状15-47 2.1 活性污泥数学模型的发展15-38 2.1.1 Monod 模式15-16 2.1.2 Eckenfelder 模型16-17 2.1.3 McKinney 模型17-18 2.1.4 Lawrence - McCarty 模型18-21 2.1.5 Andrews 模型21 2.1.6 WRc 模型21-22 2.1.7 IWA 模型22-38 2.2 活性污泥数学模型的应用现状38-47 2.2.1 国外数学模型的应用现状38-39 2.2.2 国内数学模型的应用现状39-41 2.2.3 污水处理系统计算机模拟软件的开发41-47第三章 ASM 模型在污水生物处理完全混合系统中的应用研究47-105 3.1 完全混合反应器稳态基本方程47-48 3.2 异养菌好氧生长、衰减(内源呼吸)过程模拟48-62 3.2.1 基于2 过程3 组分的传统简化模型模拟48-53 3.2.2 基于2 过程3 组分的ASM1 简化模型模拟53-55 3.2.3 基于4 过程4 组分的ASM3 简化模型模拟55-62 3.3 有机物水解、异养菌好氧生长及衰减(内源呼吸)过程模拟62-93 3.3.1 基于3 过程5 组分的ASM1 简化模型模拟63-78 3.3.2 基于5 过程6 组分的ASM3 简化模型模拟78-93 3.4 有机物水解、自养菌和异养菌好氧生长及衰减(内源呼吸)过程模拟93-103 3.4.1 基于5 过程10 组分的ASM1 简化模型模拟94-99 3.4.2 基于7 过程10 组分的ASM3 简化模型模拟99-103 3.5 小结103-105第四章 一体式膜生物反应器数学模型概述105-124 4.1 膜生物反应器概述105-108 4.2 膜生物反应器数学模型发展108-114 4.2.1 活性污泥模型(ASM 模型)109 4.2.2 溶解性微生物产物模型(SMP 模型)109-111 4.2.3 ASM1-SMP 混合模型111-114 4.3 数学模型中有机组分的测定方法114-122 4.3.1 易生物降解有机物SS的测定方法115-121 4.3.2 慢速生物降解有机物XS的测定方法121-122 4.3.3 惰性溶解性有机物SI的测定方法122 4.3.4 惰性颗粒性有机物XI的测定方法122 4.4 小结122-124第五章 ASM 模型在一体式膜生物反应器中的应用研究.124-156 5.1 试验目的和意义124 5.2 试验装置与试验方法124-126 5.2.1 试验装置与流程124-125 5.2.2 污水水质125 5.2.3 试验方法125-126 5.2.4 测定项目及分析方法126 5.3 试验数据分析126-129 5.3.1 进出水常规组分的测定127 5.3.2 进水有机组分的测定127-129 5.3.3 进水常规数据的转换129 5.4 数学模型的建立129-134 5.4.1 动态模型基本方程129-131 5.4.2 ASM1 模型中各组分的反应速率131 5.4.3 ASM3 模型中各组分的反应速率131-134 5.5 温度的影响134-138 5.6 ASM1 模型模拟138-146 5.6.1 灵敏度分析138-139 5.6.2 模拟分析139-146 5.7 ASM3 模型模拟146-153 5.7.1 灵敏度分析146-147 5.7.2 模拟分析147-153 5.8 ASM1 与ASM3 模拟结果的比较与分析153-154 5.9 小结154-156第六章 ASM 模型在DE 型氧化沟中的应用研究.156-187 6.1 西安市北石桥污水净化中心DE 型氧化沟简介156-160 6.1.1 中心概况156-157 6.1.2 污水处理工艺流程157-158 6.1.3 DE 型氧化沟脱氮除磷机理及运行方式158-160 6.2 进出水水质分析160-163 6.2.1 常规监测数据160 6.2.2 常规监测数据的转换160-163 6.3 数学模型的建立163-176 6.3.1 动态模型基本方程163-170 6.3.2 ASM1 模型中各组分的反应速率170-173 6.3.3 ASM3 模型中各组分的反应速率173-176 6.4 ASM1 模型模拟176-180 6.4.1 模拟分析176-179 6.4.2 灵敏度分析179-180 6.5 ASM3 模型模拟180-184 6.5.1 模拟分析180-183 6.5.2 灵敏度分析183-184 6.6 ASM1 与ASM3 模拟结果的比较与分析184-185 6.7 小结185-187第七章 结论与建议187-190 7.1 结论187-189 7.2 建议189-190参考文献190-196攻读博士学位期间发表的论文196-197致谢197
本文地址:
本文关键词:活性污泥数学模型ASM1及ASM3在MBR和DE型氧化沟中的应用研究,由笔耕文化传播整理发布。
本文编号:97305
本文链接:https://www.wllwen.com/kejilunwen/yysx/97305.html