当前位置:主页 > 农业论文 > 农作物论文 >

蔗糖影响水稻耐热性的作用机理研究

发布时间:2021-04-05 10:28
  温室气体的大量排放,导致全球气候变暖,极端高温天气频繁发生,严重影响了水稻等粮食作物的生长发育。蔗糖是一种双糖,是光合作用的主要产物,是植物储藏、积累和运输糖分的主要形式。近年来发现,蔗糖不仅可作为能量来源和结构物质的重要组成元件,且具有信号调节功能,可调节相关基因的表达和酶活性,进而调节植物生长发育和应对不良环境。由于水稻热响应机理的复杂性,蔗糖对水稻耐热性的调控机理尚不明确,本文利用耐热性存在差异的两个水稻材料Zhefu802及其淡绿叶近等基因系fgl,分别从苗期和花粉母细胞减数分裂期研究蔗糖参与调控水稻耐热性的作用机理。结果如下:两个水稻材料于六叶期进行极端高温处理(45°C 8h),其中高温处理前分别用水和0.1%的蔗糖进行叶面喷施,高温处理结束后进行取样并测定相关指标,结果显示:与水相比,外源蔗糖可显著提高高温后水稻的存活率和Fv/Fm,显著降低叶片H2O2和MDA含量,显著提高CAT酶的活性、蔗糖含量、可溶性总糖的含量、淀粉的积累和非结构性碳水化合物的含量,显著提高了氧化型辅酶I NAD+和还原型辅酶I NA... 

【文章来源】:中国农业科学院北京市

【文章页数】:180 页

【学位级别】:博士

【文章目录】:
摘要
ABSTRACT
LIST OF ABBREVIATIONS
CHAPTER 1 INTRODUCTION
    1.1 General Introduction
    1.2 Review of Literature
        1.2.1 Purpose of the Research
        1.2.2 Significance of the Research
        1.2.3 Effect of Heat Stress on Plants Growth and Development
        1.2.4 Role of Sugars in Plants Response to Heat Stress
            1.2.4.1 Plants Response to Sugar Starvation
            1.2.4.2 Plants Response to Excess Sugar Treatment
            1.2.4.3 Sucrose, Energy Source or Signaling Molecule?
            1.2.4.4 Role of Sucrose as Energy Source in Plants Response to Heat Stress
            1.2.4.5 Role of Sucrose as Signaling Molecule in Plants Response to Heat Stress
        1.2.5 Role of Abscisic acid (ABA) in Plants Response to Heat Stress
        1.2.6 Sucrose Interaction with Reactive Oxygen Species in Plants Response to Heat Stress
        1.2.7 Sucrose Interaction with Abscisic acid (ABA) in Plants Response to Heat Stress
        1.2.8 Strategies to Improve Tolerance against Heat Stress
        1.2.9 Research Technical Map
CHAPTER 2 THE EFFECTS OF SUCROSE ON RICE THERMO-TOLERANCE DURINGSEEDLING STAGE
    2.1 Introduction
    2.2 Materials and Methods
        2.2.1 Study Location and Environment
        2.2.2 Plant Materials
        2.2.3 Experimental Set up and Growth Condition
        2.2.4 Heat Stress Initiation
        2.2.5 Data Collections
            2.2.5.1 Determination of Hydrogen peroxide (H2O2) Content and Antioxidant enzymeActivities
            2.2.5.2 Determination of Carbohydrate Content
            2.2.5.3 Determination of Nicotinamide Adenine Dinucleotide (NAD+) and NicotinamideAdenine Dinucleotide, reduced (NADH) Content.
            2.2.5.4 Determination of Chlorophyll fluorescence Parameters (Fv/Fm) andMalondialdehyde (MDA) Content
            2.2.5.5 Determination of Adenosine Triphosphate (ATP) Content
            2.2.5.6 Determination of Poly(ADP-ribose)polymerase (PARP) Activity
        2.2.6 Statistical Analysis
    2.3 Results
        2.3.1 Effect of Sucrose on Rice Leaves Phenotype, Chlorophyll fluorescence (Fv/Fm) andMalondialdehyde (MDA) under Heat Stress
        2.3.2 Effect of Sucrose on Rice Leaves H2O2 Content and Antioxidant Enzyme Activity underHeat Stress
        2.3.3 Effect of Sucrose on Rice Leaves Carbohydrates Content under Heat Stress
        2.3.4 Effect of Sucrose on Rice Leaves NAD+/NADH Content under Heat Stress
        2.3.5 Effect of Sucrose on Rice Leaves ATP Content under Heat Stress
        2.3.6 Effect of Sucrose on Rice Leaves PARP Content under Heat Stress
    2.4 Discussion
    2.5 Conclusion
CHAPTER 3 TRANSCRIPTOME ANALYSIS FOR THE RICE GENOTYPES UNDER HEATSTRESS
    3.1 Introduction
    3.2 Materials and Methods
        3.2.1 Study Location and Environment
        3.2.2 Plant Materials
        3.2.3 Experimental Set up and Growth Condition
        3.2.4 Heat Stress Initiation
        3.2.5 Data Collections
            3.2.5.1 RNA Extraction and Sequencing
            3.2.5.2 Transcript Quantification and Differentially Expressed Genes (DEGs) Analysis
            3.2.5.3 GO and KEGG Functional and Enrichment Analysis.
            3.2.5.4 Validation of RNA-Seq Data by q RT-PCR Analysis
        3.2.6 Statistical Analysis
    3.3 Results
        3.3.1 Quality Control Analysis
        3.3.2 Identification of Differentially Expressed Genes (DEGs) Following Heat Stress
        3.3.3 Volcano Plots for DEGs in Pairwise Comparison between Zhefu802 and fgl
        3.3.4 Principal Component Analysis of DEGs in Pairwise Comparison between Zhefu802 andfgl
        3.3.5 Pairwise-Pearson Correlation Heatmap of the Comparative Transcriptome Analysis ofZhefu802 and fgl
            3.3.5.1 Within the Genotypes
            3.3.5.2 Between the Genotypes
vsControl between the Two Genotypes">            3.3.5.3 StressvsControl between the Two Genotypes
        3.3.6 Heatmap Hierarchical Cluster Analysis of DEGs in Pairwise Comparison BetweenZhefu802 and fgl
        3.3.7 Gene Ontology Functional Enrichment Classification of DEGs in Pairwise Comparisonbetween Zhefu802 and fgl
        3.3.8 Statistics of Kyoto Encyclopedia of Genes and Genomes Pathway Enrichment of DEGs inPairwise Comparison between Zhefu802 and fgl
        3.3.9 Quantitative Real-Time PCR (q RT-PCR) Validation of DEGs
    3.4 Discussion
    3.5 Conclusion
CHAPTER 4 TRANSCRIPTOME ANALYSIS FOR THE EFFECTS OF SUCROSE UNDER HEATSTRESS
    4.1 Introduction
    4.2 Materials and Methods
        4.2.1 Study Location and Environment
        4.2.2 Plant Materials
        4.2.3 Experimental Set up and Growth Condition
        4.2.4 Heat Stress Initiation
        4.2.5 Data Collections
            4.2.5.1 RNA Extraction and Sequencing
            4.2.5.2 Transcript Quantification and Differentially Expressed Genes (DEGs) Analysis
            4.2.5.3 GO and KEGG Functional and Enrichment Analysis
        4.2.6 Statistical Analysis
    4.3 Results
        4.3.1 Quality Control Analysis
        4.3.2 Identification of Differentially Expressed Genes (DEGs) Following Heat Stress
        4.3.3 Volcano Plots for DEGs in Pairwise Comparison between Zhefu802 and fgl
        4.3.4 Principal Component Analysis of DEGs in Pairwise Comparison between Zhefu802 andfgl
        4.3.5 Pairwise-Pearson Correlation Heatmap of the Comparative Transcriptome Analysis ofZhefu802 and fgl
            4.3.5.1 Within the Genotypes
            4.3.5.2 Between the Genotypes
vsControl between the Two Genotypes">            4.3.5.3 StressvsControl between the Two Genotypes
        4.3.6 Heatmap Hierarchical Cluster Analysis of DEGs in Pairwise Comparison BetweenZhefu802 and fgl
        4.3.7 Gene Ontology Functional Enrichment Classification of DEGs in Pairwise Comparisonbetween Zhefu802 and fgl
        4.3.8 Statistics of Kyoto Encyclopedia of Genes and Genomes Pathway Enrichment of DEGs inPairwise Comparison between Zhefu802 and fgl
    4.4 Discussion
    4.5 Conclusion
CHAPTER 5 THE EFFECTS OF SUCROSE INTERACT WITH ABA ON RICE THERMO-TOLER- ANCE DURING PMC STAGE
    5.1 Introduction
    5.2 Materials and Methods
        5.2.1 Study Location and Environment
        5.2.2 Plant Materials
        5.2.3 Experimental Set up and Growth Condition
        5.2.4 Heat Stress Initiation
        5.2.5 Data Collections
            5.2.5.1 Determination of Pollen Viability
            5.2.5.2 Determination of Seed-Setting Rate
            5.2.5.3 Determination of Non-Structural Carbohydrate (NSC) Content
            5.2.5.4 Determination of Sucrose Content
            5.2.5.5 Determination of Abscisic Acid (ABA) Content
            5.2.5.6 Determination of ATP/ADP Content
            5.2.5.7 Determination of NAD+ and NADH Content
            5.2.5.8 Determination of PARP Content (Chapter 2)
        5.2.6 Statistical Analysis
    5.3 Results
        5.3.1 Sucrose ABA-Interaction Effect on Pollen viability of Rice Genotypes under HeatStress
        5.3.2 Sucrose ABA-Interaction Effect on Seed-Setting of Rice Genotype under HeatStress
        5.3.3 Sucrose ABA-Interaction Effect on NSC Content in Rice Genotype under HeatStress
        5.3.4 Sucrose ABA-Interaction Effect on Sucrose Content in Rice Genotype under HeatStress
        5.3.5 Sucrose ABA-Interaction Effect on ABA Content in Rice Genotype under HeatStress
        5.3.6 Sucrose ABA-Interaction Effect on ATP/ADP Content in Rice Genotype under HeatStress
        5.3.7 Sucrose ABA-Interaction Effect on NAD+/NADH Content in Rice Genotype under HeatStress
        5.3.8 Sucrose ABA-Interaction Effect on PARP Content CHAP in Rice Genotype under HeatStress
    5.4 Discussion
    5.5 Conclusion
CHAPTER 6 MAJOR FINDINGS AND FUTURE PROSPECTS
    6.1 Major fndings
    6.2 Future pospects
REFERENCES
APPENDIXES
LIST OF PUBLICATIONS DURING PHD STUDY
ACKNOWLEDGEMENTS
AUTHOR RESUME


【参考文献】:
期刊论文
[1]Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants[J]. Shabir H.Wani,Vinay Kumar,Varsha Shriram,Saroj Kumar Sah.  The Crop Journal. 2016(03)
[2]Microsatellite-Aided Screening for Fertility Restoration Genes(Rf)Facilitates Hybrid Improvement[J]. RAAFAT El-Namaky,SABER Sedeek,YONNELLE Dea Moukoumbi,RODOMIRO Ortiz,BABOUCARR Manneh.  Rice Science. 2016(03)
[3]New Temperature Sensitive Genic Male Sterile Lines with Better Outcrossing Ability for Production of Two-Line Hybrid Rice[J]. S.J.ARASAKESARY,S.MANONMANI,R.PUSHPAM,S.ROBIN.  Rice Science. 2015(01)
[4]水稻灌浆期耐热害的数量性状基因位点分析[J]. 朱昌兰,肖应辉,王春明,江玲,翟虎渠,万建民.  中国水稻科学. 2005(02)
[5]籼稻标记性状等基因系的构建(英文)[J]. 曾大力,钱前,董国军,朱旭东,董凤高,滕胜,郭龙标,曹立勇,程式华,熊振民.  Acta Botanica Sinica. 2003(09)
[6]水稻籽粒灌浆期间茎鞘贮存物质含量变化及其影响因素研究[J]. 梁建生,曹显祖,张海燕,宋平,朱庆森.  中国水稻科学. 1994(03)



本文编号:3119464

资料下载
论文发表

本文链接:https://www.wllwen.com/nykjlw/nzwlw/3119464.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户dd234***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com