分根干旱胁迫对大豆农艺性状及籽粒代谢物的影响
发布时间:2021-10-11 21:39
Maize-soybean relay strip intercropping system has developed and popularized in the southwestern China that has minimum soil water loses and high water productivity.Early studies have suggested that the field microenvironment exhibits changes for soybean plant,especially for the light and water conditions.Soil moisture contents followed the trend in the order: maize row < maize-to-soybean row < soybean row in maize and soybean intercropping system.Therefore,we hypothesized the water imbala...
【文章来源】:四川农业大学四川省 211工程院校
【文章页数】:85 页
【学位级别】:硕士
【文章目录】:
Abstract
1. INTRODUCTION
1.1. Research background
1.2. Purpose and significance
1.3. Key issues to be solved and scientific questions
1.4. Scientific placement of this research
1.5. Research content
2. LITERATURE REVIEW
2.1. Maize and soybean intercropping
2.2. Half –root stress and intercropping
2.3. Morphophysiological characterization of drought using half-root system
2.4. Antioxidant defense system under imbalance water deficit conditions
2.5. Metabolic responses of soybean under water deficit conditions
3. MATERIALS AND METHODS
3.1. Plant material and experimental design
3.2. Solution culture experiment
3.3. Sampling and measurement
3.3.1. Agro-Morphological parameters
3.3.2. Gas exchange parameters
3.3.3. Enzymatic activities measurement
3.3.4. Determination of Osmoprotectants
3.3.5. Metabolic parameters
3.3.6. Statistical analyses
4. RESULTS
4.1. Water consumption
4.2. Soil water content
4.3. Growth traits
4.3.1. Plant height (cm)
4.3.2. Stem diameter (mm)
4.3.3. Number of node per plant
4.3.4. Number of branch per plant
4.3.5. Pod length (cm)
4.4. Yield and yield related characteristics
4.4.1. Yield per plant (g)
4.4.2. 100 seed weight (g)
4.4.3. Number of grain per plant
4.4.4. Number of pod per plant
4.4.5. Number of infertile pod per plant
4.5. Biomass accumulation and distribution
4.6. Osmoprotectants
4.6.1. Starch
4.6.2. Sucrose
4.6.3. Soluble Polysaccharide
4.6.4. Proline
4.7. Gas exchange parameters
4.7.1. Photosynthesis
4.7.2. Transpiration rate
4.7.3. Stomatal conductance
4.7.4. Chlorophyll content
4.8. Soybean Reactive Oxygen Species (ROS) and Antioxidative Enzymes
4.8.1. Effect of PEG treatment on ROS levels
4.8.2. Effect of PEG treatment on antioxidative enzymes activities
4.9. Metabolic response of soybean under split-root drought stress
4.9.1. Protein
4.9.2. Isoflavones
4.9.3. Fatty acids
5. DISCUSSION
5.1. Effect of split-root drought on agro-morphological traits of soybean
5.2. Effect of split-root drought on soybean biomass accumulation and distribution
5.3. Effect of split-root drought treatment on soybean osmoprotectant
5.4. Effect of split-root drought treatment on soybean gas exchange parameters
5.5. Soybean reactive oxygen species (ROS) and antioxidative enzymes
5.6. Soybean metabolism and split-root drought treatment
6. CONCLUSION AND FUTURE PERSPECTIVES
6.1. Conclusion
6.2. Future Perspectives
REFERENCES
DEDICATION
ACKNOWLEDGEMENTS
Papers List
Appendices
【参考文献】:
期刊论文
[1]荫蔽信号对大豆幼苗异黄酮合成的影响[J]. 秦雯婷,丰宇瑞,雷震,杨才琼,吴海军,Nasir Iqbal,杨文钰,刘江. 天然产物研究与开发. 2017(09)
[2]不同田间配置对玉豆带状套作系统水分分布及水分利用率的影响[J]. 叶林,杨峰,苏本营,张静,刘卫国,杨文钰. 干旱地区农业研究. 2015(04)
[3]套作大豆苗期倒伏与茎秆内源赤霉素代谢的关系[J]. 罗玲,于晓波,万燕,蒋涛,杜俊波,邹俊林,杨文钰,刘卫国. 中国农业科学. 2015(13)
[4]不同株型玉米套作大豆生长环境动态及群体产量研究[J]. 杨峰,崔亮,黄山,刘卫国,雍太文,杨文钰. 大豆科学. 2015(03)
[5]小麦-玉米-大豆带状复合种植机械化研究进展[J]. 吴维雄,罗锡文,杨文钰,彭淑卉. 农业工程学报. 2015(S1)
[6]施氮方式对玉米-大豆套作体系中作物产量及玉米籽粒灌浆特性的影响[J]. 董茜,雍太文,刘小明,刘文钰,徐婷,宋春,王小春,杨文钰. 作物学报. 2014(11)
[7]减量施氮对玉米-大豆套作体系中作物产量及养分吸收利用的影响[J]. 雍太文,刘小明,刘文钰,苏本营,宋春,杨峰,王小春,杨文钰. 应用生态学报. 2014(02)
[8]我国23个土壤磷素淋失风险评估Ⅰ.淋失临界值[J]. 钟晓英,赵小蓉,鲍华军,李浩浩,李贵桐,林启美. 生态学报. 2004(10)
本文编号:3431282
【文章来源】:四川农业大学四川省 211工程院校
【文章页数】:85 页
【学位级别】:硕士
【文章目录】:
Abstract
1. INTRODUCTION
1.1. Research background
1.2. Purpose and significance
1.3. Key issues to be solved and scientific questions
1.4. Scientific placement of this research
1.5. Research content
2. LITERATURE REVIEW
2.1. Maize and soybean intercropping
2.2. Half –root stress and intercropping
2.3. Morphophysiological characterization of drought using half-root system
2.4. Antioxidant defense system under imbalance water deficit conditions
2.5. Metabolic responses of soybean under water deficit conditions
3. MATERIALS AND METHODS
3.1. Plant material and experimental design
3.2. Solution culture experiment
3.3. Sampling and measurement
3.3.1. Agro-Morphological parameters
3.3.2. Gas exchange parameters
3.3.3. Enzymatic activities measurement
3.3.4. Determination of Osmoprotectants
3.3.5. Metabolic parameters
3.3.6. Statistical analyses
4. RESULTS
4.1. Water consumption
4.2. Soil water content
4.3. Growth traits
4.3.1. Plant height (cm)
4.3.2. Stem diameter (mm)
4.3.3. Number of node per plant
4.3.4. Number of branch per plant
4.3.5. Pod length (cm)
4.4. Yield and yield related characteristics
4.4.1. Yield per plant (g)
4.4.2. 100 seed weight (g)
4.4.3. Number of grain per plant
4.4.4. Number of pod per plant
4.4.5. Number of infertile pod per plant
4.5. Biomass accumulation and distribution
4.6. Osmoprotectants
4.6.1. Starch
4.6.2. Sucrose
4.6.3. Soluble Polysaccharide
4.6.4. Proline
4.7. Gas exchange parameters
4.7.1. Photosynthesis
4.7.2. Transpiration rate
4.7.3. Stomatal conductance
4.7.4. Chlorophyll content
4.8. Soybean Reactive Oxygen Species (ROS) and Antioxidative Enzymes
4.8.1. Effect of PEG treatment on ROS levels
4.8.2. Effect of PEG treatment on antioxidative enzymes activities
4.9. Metabolic response of soybean under split-root drought stress
4.9.1. Protein
4.9.2. Isoflavones
4.9.3. Fatty acids
5. DISCUSSION
5.1. Effect of split-root drought on agro-morphological traits of soybean
5.2. Effect of split-root drought on soybean biomass accumulation and distribution
5.3. Effect of split-root drought treatment on soybean osmoprotectant
5.4. Effect of split-root drought treatment on soybean gas exchange parameters
5.5. Soybean reactive oxygen species (ROS) and antioxidative enzymes
5.6. Soybean metabolism and split-root drought treatment
6. CONCLUSION AND FUTURE PERSPECTIVES
6.1. Conclusion
6.2. Future Perspectives
REFERENCES
DEDICATION
ACKNOWLEDGEMENTS
Papers List
Appendices
【参考文献】:
期刊论文
[1]荫蔽信号对大豆幼苗异黄酮合成的影响[J]. 秦雯婷,丰宇瑞,雷震,杨才琼,吴海军,Nasir Iqbal,杨文钰,刘江. 天然产物研究与开发. 2017(09)
[2]不同田间配置对玉豆带状套作系统水分分布及水分利用率的影响[J]. 叶林,杨峰,苏本营,张静,刘卫国,杨文钰. 干旱地区农业研究. 2015(04)
[3]套作大豆苗期倒伏与茎秆内源赤霉素代谢的关系[J]. 罗玲,于晓波,万燕,蒋涛,杜俊波,邹俊林,杨文钰,刘卫国. 中国农业科学. 2015(13)
[4]不同株型玉米套作大豆生长环境动态及群体产量研究[J]. 杨峰,崔亮,黄山,刘卫国,雍太文,杨文钰. 大豆科学. 2015(03)
[5]小麦-玉米-大豆带状复合种植机械化研究进展[J]. 吴维雄,罗锡文,杨文钰,彭淑卉. 农业工程学报. 2015(S1)
[6]施氮方式对玉米-大豆套作体系中作物产量及玉米籽粒灌浆特性的影响[J]. 董茜,雍太文,刘小明,刘文钰,徐婷,宋春,王小春,杨文钰. 作物学报. 2014(11)
[7]减量施氮对玉米-大豆套作体系中作物产量及养分吸收利用的影响[J]. 雍太文,刘小明,刘文钰,苏本营,宋春,杨峰,王小春,杨文钰. 应用生态学报. 2014(02)
[8]我国23个土壤磷素淋失风险评估Ⅰ.淋失临界值[J]. 钟晓英,赵小蓉,鲍华军,李浩浩,李贵桐,林启美. 生态学报. 2004(10)
本文编号:3431282
本文链接:https://www.wllwen.com/nykjlw/nzwlw/3431282.html
最近更新
教材专著