合成气输送床甲烷化催化剂与工艺研究
发布时间:2020-03-30 04:14
【摘要】:以煤为原料生产替代天然气可为我国边远地区低阶煤的高值利用开辟广阔的应用前景,同时对保障我国能源安全具有重要的战略意义。目前唯一商业化的甲烷化工艺——多段绝热固定床工艺存在流程复杂、控制难度大、催化剂易高温失活等问题。由于合成气甲烷化属于典型的快速表面反应过程,充分利用输送床高效传热、传质及处理量大的优点,本论文提出输送床-固定床两段甲烷化工艺。该工艺采用导热系数较高、热容量大的固体催化剂颗粒循环完成反应移热和反应温度的有效调控,实现合成气的高效转化,同时大大降低催化剂用量。输送床甲烷化技术需要突破的关键问题有两个:一是高效耐磨流化床甲烷化催化剂的开发,另一个是输送床甲烷化新工艺的研究。所以本论文的主要研究内容如下:(1)合成气两段甲烷化工艺的过程模拟。使用Aspen Plus软件对不同的两段甲烷化工艺进行过程模拟,以证明两段甲烷化工艺的可行性并确定最优的反应器组合方式。两段绝热固定床串联的甲烷化工艺需采用高的气体循环比来控制反应温度,因此能耗较高。流化床-固定床两段甲烷化工艺的CO转化率和CH4选择性都要高于两段固定床工艺,同时实验室研究也证实了流化床甲烷化在系统活性和降低催化剂表面积碳性能方面相对于固定床的技术优势。但低气速鼓泡流化床单位体积处理量小,大型化应用难。基于CO甲烷化快速的表面反应特性,“输送床+尾部净化固定床”甲烷化工艺采用导热系数较高的催化剂颗粒作为主要热载体,可以简化工艺,减小反应器尺寸,同时降低了催化剂用量。(2)添加不同粘结剂的Ni-Mg/Al2O3流化床甲烷化催化剂。采用共沉淀法制备Ni-Mg/Al2O3前驱体,然后添加不同的粘结剂制浆后喷雾造粒,形成具有一定粒度分布的球形颗粒。本论文所用粘结剂有铝溶胶(AS)、酸性硅溶胶(SS)、铝改性硅溶胶(AM)和碱性硅溶胶(CC),制备的催化剂分别命名为C-33AS、C-33SS、C-33AM和C-33CC,以C-33SS为例,其中33表示溶胶中氧化物占最终制得的催化剂中氧化物的质量百分含量。空气喷射磨损测试耐磨性能:C-33SSC-33AM C-33AS C-33CC,硅溶胶的添加显著提高了催化剂的抗磨损能力,C-33SS样品的磨损指数为2.98%/h。催化剂颗粒结构分析表明颗粒内部大于20nm的孔越多,催化剂耐磨性能越差。623-923 K下各催化剂活性(主要是CO转化率):C-33AS C-33SS C-33AM≈C-33CC。铝溶胶制备的催化剂中金属Ni分散性好,可参与反应的表面活性位数量多,因此催化活性好,但磨损指数高达7.64%/h。C-33AS、C-33SS和C-33CC在900 K、2.5 MPa下20 h稳定性测试中均表现出较好的催化稳定性,而C-33AM催化剂由于在表面生成大量不活泼碳致使催化剂活性降低。(3)硅源对Ni-Mg/Al2O3催化剂性能的影响。本论文所用硅源有正硅酸四乙酯(C-10TEOS)、酸性硅溶胶(C-33SS、C-10SS)和硅酸钠(C-10NS)。磨损测试结果表明催化剂的抗磨损能力:C-10TEOS C-33SS C-10NS>>C-10SS。催化剂颗粒内部的多孔性以及骨架结构共同影响其耐磨性能。TEOS作为硅源时,其水解和金属盐沉淀同时进行,SiO2骨架网络均匀分散于前驱体颗粒中,提高了前驱体粒子强度,同时颗粒骨架连接致密,使得C-10TEOS催化剂耐磨性能最好,磨损指数为2.18%/h。同时常压下催化剂活性(主要是CO转化率):C-10TEOS C-10NS≈ C-33SS。C-10TEOS催化剂具有较高催化活性和稳定性、较好的抗积碳和抗Ni烧结能力,比C-33SS催化剂表现出更好的性能。(4)其他制备因素对Ni-Mg/Al2O3催化剂性能的影响。考察TEOS添加量、NiO含量以及焙烧温度对催化剂性能的影响,确定最优的催化剂组成和制备工艺参数。不同TEOS添加量所制备催化剂的耐磨性能:C-10TEOSC-15TEOS C-20TEOSC-5TEOS,催化活性随SiO2含量的增多而降低。催化剂颗粒抗磨损能力与其NiO含量呈非线性关系,当NiO含量为20wt.%时,颗粒的抗磨损能力最强,且还原后催化剂颗粒耐磨性能变化不大;而催化活性则随催化剂内部NiO含量增加而提高,但当活性组分含量高于20wt.%时,其活性增加幅度大幅减小。焙烧温度升高,催化剂颗粒的骨架强度及颗粒间的相互作用增强,相应提高了其抗磨损能力,但中等温度(873 K)焙烧的催化剂甲烷化活性最好。综合分析采用TEOS作硅源制备流化床甲烷化催化剂时,催化剂中SiO2含量优选为10wt.%,NiO含量优选为20wt.%,焙烧温度优选为873 K。(5)小型输送床甲烷化反应器内耐磨催化剂反应特性研究。提高反应器操作气速和返料阀的松动风速,反应器内颗粒循环量均增加,且操作气速对系统颗粒循环量的影响要大于松动风速的影响;但操作气速的提高使得气体在反应器内停留时间缩短,造成CO转化率降低,而松动风速的提高促进了CO的转化。当输送床内固体颗粒贮量大于100g时,颗粒贮料量对颗粒循环量和催化活性的影响均很小。返料颗粒温度对系统催化活性影响很大,提高返料颗粒温度,催化活性显著提高。输送床反应器内高效的气固反应效率及传热效率使得在673K、4.57m/s(653K)高操作气速下系统仍有86%的CO转化率,且输送床内床层温差只有不到10K。输送床床层压降随颗粒返料温度的升高而增加,随操作气速的提高而增大。对输送床内反应进行热量衡算,发现常压输送床内反应产生的热量移出主要通过高热容的固体催化剂颗粒循环来实现。
【图文】:
W提高甲烧产率,两段反应器均采用产品气循环的方式来控制反应温度,最后两个反逡逑应器中的气体进行混合,然后经压缩冷却除掉其中的水分得到合成天然气,其简要工逡逑艺流程如图1.7所示。文献中未找到该工艺相关的反应温度、所使用催化剂等具体操逡逑作参数。Linder等温固定床甲烧化工艺设计合理,CO转化率也很高,,但较为复杂,逡逑不易控制,目前该技术仅在合成甲薛工艺中得到应用。逡逑Adaiahatic逡逑fixed邋bed逡逑SNG逡逑;I逦?逡逑*逦%煎澹慑危哄位、逡逑!邋?邋广;r逡逑r^」’,,逦rS邋!邋V逡逑^与|邋§1心逡逑逦1邋[逦i逡逑U"化crmal逦—I逦'邋■邋I逡逑rued邋bed邋j邋节逦1邋,N逡逑:逦T逦T逡逑BFW逦High邋pressurized邋Syngas逡逑、化am逡逑图1.7邋Linder公司等温固定床甲巧化工艺流程图PI逡逑Fig.邋1.7邋Schematic邋diagram邋of邋化e邋Linder邋SNG邋process邋PI逡逑1.2.5液相甲烧化工芝逡逑1977-1978年,美圃化学系统公司开发了一种液相甲烧化工艺iw'isi,气化炉生产逡逑
件下完成反应并能有效移除反应热,操作上灵活性较大。导热油经过滤后可循环使用,逡逑产品气则在液相分离器和产品气分离器中进行分离纯化,该工艺无需借助气体循环就逡逑可获得较高的CO转化率和CH4选择性,其王艺流程如图1.8所示。逡逑b8、^邋Gas邋cooling逦Me化ane-rich邋gas逡逑I逦*邋\邋/逦Product邋gas逡逑LPM邋reactor!逦V逦I邋J邋sepa巧化r逡逑A邋Liquid邋phase逡逑I逦/邋\邋separator逡逑\ ̄7逦^逦A逡逑\逦/逦k邋yj邋Condensed逡逑\邋j逦义户^邋oil邋puw逡逑A逦Filter逡逑Desulphurised邋/邋\逦逦逦逡逑syngas邋/逦\逦^—、、逦=.逡逑逦y逦Qroilation邋pump逡逑optional邋water逦逦逡逑Heat邋Exchanger逡逑'Catatysiflnes逡逑图1.8液相甲烧化工艺流程图I"'逡逑Fig.邋1.8邋Schematic邋diagram邋of邋the邋liquid邋phase邋methanation邋process邋1"1逡逑相比于传统绝热固定床反应器,液相甲烧化反应器具有较高的传热速率,便于控逡逑制反应温度,防止催化剂烧结和失活:催化剂在换热介质中高度分散,可大大提高催逡逑化剂的反应效能:此外,该工艺不需停车即可完成催化剂的更换,工业操作方便。但逡逑该工艺对催化剂强度要求较高,细小的催化剂颗粒分离巧难,从导热油中分寓催化剂逡逑常需附加费用昂贵的过滤设备
【学位授予单位】:中国科学院研究生院(过程工程研究所)
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TE665.3;TQ426
本文编号:2607021
【图文】:
W提高甲烧产率,两段反应器均采用产品气循环的方式来控制反应温度,最后两个反逡逑应器中的气体进行混合,然后经压缩冷却除掉其中的水分得到合成天然气,其简要工逡逑艺流程如图1.7所示。文献中未找到该工艺相关的反应温度、所使用催化剂等具体操逡逑作参数。Linder等温固定床甲烧化工艺设计合理,CO转化率也很高,,但较为复杂,逡逑不易控制,目前该技术仅在合成甲薛工艺中得到应用。逡逑Adaiahatic逡逑fixed邋bed逡逑SNG逡逑;I逦?逡逑*逦%煎澹慑危哄位、逡逑!邋?邋广;r逡逑r^」’,,逦rS邋!邋V逡逑^与|邋§1心逡逑逦1邋[逦i逡逑U"化crmal逦—I逦'邋■邋I逡逑rued邋bed邋j邋节逦1邋,N逡逑:逦T逦T逡逑BFW逦High邋pressurized邋Syngas逡逑、化am逡逑图1.7邋Linder公司等温固定床甲巧化工艺流程图PI逡逑Fig.邋1.7邋Schematic邋diagram邋of邋化e邋Linder邋SNG邋process邋PI逡逑1.2.5液相甲烧化工芝逡逑1977-1978年,美圃化学系统公司开发了一种液相甲烧化工艺iw'isi,气化炉生产逡逑
件下完成反应并能有效移除反应热,操作上灵活性较大。导热油经过滤后可循环使用,逡逑产品气则在液相分离器和产品气分离器中进行分离纯化,该工艺无需借助气体循环就逡逑可获得较高的CO转化率和CH4选择性,其王艺流程如图1.8所示。逡逑b8、^邋Gas邋cooling逦Me化ane-rich邋gas逡逑I逦*邋\邋/逦Product邋gas逡逑LPM邋reactor!逦V逦I邋J邋sepa巧化r逡逑A邋Liquid邋phase逡逑I逦/邋\邋separator逡逑\ ̄7逦^逦A逡逑\逦/逦k邋yj邋Condensed逡逑\邋j逦义户^邋oil邋puw逡逑A逦Filter逡逑Desulphurised邋/邋\逦逦逦逡逑syngas邋/逦\逦^—、、逦=.逡逑逦y逦Qroilation邋pump逡逑optional邋water逦逦逡逑Heat邋Exchanger逡逑'Catatysiflnes逡逑图1.8液相甲烧化工艺流程图I"'逡逑Fig.邋1.8邋Schematic邋diagram邋of邋the邋liquid邋phase邋methanation邋process邋1"1逡逑相比于传统绝热固定床反应器,液相甲烧化反应器具有较高的传热速率,便于控逡逑制反应温度,防止催化剂烧结和失活:催化剂在换热介质中高度分散,可大大提高催逡逑化剂的反应效能:此外,该工艺不需停车即可完成催化剂的更换,工业操作方便。但逡逑该工艺对催化剂强度要求较高,细小的催化剂颗粒分离巧难,从导热油中分寓催化剂逡逑常需附加费用昂贵的过滤设备
【学位授予单位】:中国科学院研究生院(过程工程研究所)
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TE665.3;TQ426
本文编号:2607021
本文链接:https://www.wllwen.com/projectlw/hxgylw/2607021.html
最近更新
教材专著