杂交鲟蛋白水解物的制备、分离及性质研究
发布时间:2021-05-28 09:47
如今,人们对如何利用酶解手段从鱼蛋白中提取有价值的营养物质越来越感兴趣。鱼蛋白水解物(FPH)是以鱼为原料,经酶解而制备的产物。从FPH中生产的肽具有较小的分子质量,可以被用于各种疾病的治疗,如动脉粥样硬化、癌症、冠心病和心血管疾病。将酶解工艺与超声波、微波辐射、超声/微波集成等现代技术相结合制备FPH,有助于改进酶水解工艺和提高产品性能。首先,杂交鲟(Acipenser ruthenus Linnaeus x Huso dauricus(Georgi))肌肉为原料,研究了不同条件下木瓜蛋白酶对蛋白水解物水解度的影响。在固液比为1:1、酶-底物比为3%、p H为6、温度为70℃、培养时间为6h的最佳工艺条件下,蛋白的水解度为24.89%。蛋白水解物的得率为17.47%,其中蛋白质含量为79.67%,氨基酸含量为96.35g/g蛋白质。多肽的分子量随水解时间的延长而减小。制备的蛋白水解物的溶解度为86.57~98.74%,乳化活性指数为11.0~13.27m2/g,在不同p H水平下乳化稳定性指数高于94%,持水能力为1.93g水/g蛋白质,持油能力为2.59g油/...
【文章来源】:江南大学江苏省 211工程院校 教育部直属院校
【文章页数】:169 页
【学位级别】:博士
【文章目录】:
ACKNOWLEDGMENT
DEDICATION
LIST OF IMPORTANT ABBREVIATIONS
ABSTRACT
摘要(Chinese abstract)
CHAPTER ONE GENERAL INTRODUCTION AND LITERATURE REVIEW
1.1.Introduction
1.2.Preparation of protein hydrolysates by enzymatic hydrolysis
1.3.Degree of hydrolysis
1.4.Nutritional composition of protein hydrolysates
1.4.1.Proximate composition
1.4.2.Amino acids content
1.5.Functional properties of fish protein hydrolysates
1.5.1.Solubility
1.5.2.Emulsifying properties
1.5.3.Foaming properties
1.5.4.Water and oil holding capacity
1.6.Antioxidant activities of FPH
1.7.Structural and physicochemical properties of fish protein hydrolysate
1.8.Separation and purification of peptides
1.8.1.Fractionation and purification of active peptides
1.8.2.Identification of purified peptide
1.9.Application of ultrasonic and microwave in protein hydrolysate preparation
1.9.1 Ultrasonic treatment
1.9.2.Microwave treatment
1.10.Significance of the research topic
1.11.General objective of the study
1.12.Specific objective of the study
1.13.Reference
CHAPTER TWO Influence of enzymatic hydrolysis conditions on the degree of hydrolysis and functional properties of protein hydrolysate from a hybrid sturgeon(Acipenser ruthenus Linnaeus x Huso dauricus(Georgi))by using papain enzyme
2.1.Introduction
2.2.Materials and methods
2.2.1.Samples
2.2.2.Enzyme and chemicals
2.2.3.Proximate chemical composition
2.2.4.Amino acid analysis
2.2.5.Fatty acid profile analysis
2.2.6.Preparation of protein hydrolysates
2.2.7.Determination of the degree of hydrolysis
2.2.8.Yield
2.2.9.Determination of the molecular weight distributions
2.2.10.Functional properties of FPH
2.2.11.Statistical analysis
2.3.Results and discussion
2.3.1.Proximate chemical composition
2.3.2.Amino acid analysis
2.3.3.Fatty acid composition of sturgeon oil
2.3.4.Optimization of enzymatic hydrolysis conditions
2.3.5.Yield
2.3.6.Molecular weight distribution
2.3.7.Functional properties
2.4.Conclusion
2.5.References
CHAPTER THREE Influence of degree of hydrolysis on chemical composition,functional properties,and antioxidant activities of sturgeon(Acipenser ruthenus Linnaeus x Huso dauricus(Georgi))protein hydrolysates obtained by using Alcalase2.4L
3.1.Introduction
3.2.Materials and methods
3.2.1.Samples and chemicals
3.2.2.Preparation of sturgeon muscle
3.2.3.Preparation of protein hydrolysates
3.2.4.Determination of the degree of hydrolysis
3.2.5.Yield and color measurement
3.2.6.Proximate composition of protein hydrolysates
3.2.7.Amino acid composition analysis
3.2.8.Determination of the molecular weight distribution
3.2.9.Functional properties determination
3.2.10.Determination of antioxidant activities
3.2.11.Statistical analysis
3.3.Results and discussion
3.3.1.Optimization of hydrolysis conditions
3.3.2.Average yield and color of hydrolysates
3.3.3.Proximate composition of hydrolysates
3.3.4.Amino acids composition
3.3.5.Molecular mass distribution
3.3.6.Functional properties of sturgeon protein hydrolysates
3.3.7.Antioxidant activities of sturgeon protein hydrolysates
3.4.Conclusions
3.5.References
CHAPTER FOUR Structural and physicochemical characteristics of lyophilized sturgeon protein hydrolysates prepared by using two different enzymes
4.1.Introduction
4.2.Material and methods
4.2.1 Materials
4.2.2.Preparation of samples and lyophilized protein hydrolysates
4.2.3.Determination of degree of hydrolysis and protein hydrolysate yield
4.2.4.Particle size distribution
4.2.5.Zeta potential measurements
4.2.6.Determination of peptide molecular weights
4.2.7.Surface hydrophobicity and turbidity
4.2.8.X-Ray Diffraction(XRD)
4.2.9.Fourier transform infrared spectroscopy
4.2.10.Differential scanning calorimetry
4.2.11.Thermal-gravimetric analyses
4.2.12.Scanning electron microscopy
4.2.13.Statistical analysis
4.3.Results and discussion
4.3.1.Degree of hydrolysis and protein hydrolysate yield
4.3.2.Particle size distribution
4.3.3.Zeta potential measurements
4.3.4.Molecular weight distribution
4.3.5.Surface hydrophobicity and turbidity
4.3.6.X-Ray Diffraction
4.3.7.Fourier transform infrared spectroscopy
4.3.8.Differential scanning calorimetry
4.3.9.Thermal gravimetric analyses
4.3.10.Scanning electron microscopy
4.4.Conclusions
4.5.References
CHAPTER FIVE Effects of ultrasonic,microwave and combined ultrasonic-microwave pretreatments on the protein hydrolysate properties from sturgeon(Acipenser ruthenus Linnaeus x Huso dauricus(Georgi))
5.1.Introduction
5.2.Materials and methods
5.2.1.Materials
5.2.2.Ultrasonic and microwave equipment
5.2.3.Samples preparation
5.2.4.Preparation of protein hydrolysates
5.2.5.Degree of Hydrolysis
5.2.6.Yield of protein hydrolysates
5.2.7.Determination of amino acids profile
5.2.8. Distribution of the molecular weights
5.2.9.Solubility of protein hydrolysates
5.2.10.Determination of antioxidant activities
5.2.11.Statistical Analysis
5.3.Results and Discussions
5.3.1.Influence of pretreatments on the degree of hydrolysis
5.3.2.Influence of optimal conditions on DH
5.3.3.Yield
5.3.4.Amino acids profile
5.3.5.Molecular weights description
5.3.6.Solubility of protein hydrolysates
5.3.7.Antioxidant activities of hydrolysates
5.4.Conclusions
5.5.References
CHAPTER SIX Antioxidant properties of filtration membranes fractions obtained from sturgeon(Acipenser ruthenus Linnaeus x Huso dauricus(Georgi))proteins hydrolysates
6.1.Introduction
6.2.Material and methods
6.2.1 Materials
6.2.2.Preparation of sturgeon protein hydrolysates
6.2.3.Measurement of the degree of hydrolysis
6.2.4.Amino acid composition analysis
6.2.5.Characterization of antioxidant peptides
6.2.5.1.Fractionation
6.2.5.2.Antioxidant properties
6.2.6.Statistical analysis
6.3.Results and discussion
6.3.1.Degree of hydrolysis
6.3.2.Amino acid composition
6.3.3.Antioxidant activities of protein hydrolysates
6.3.3.1.DPPH radical scavenging activity
6.3.3.2.ABTS radical scavenging activity
6.3.4.Antioxidant properties of peptide fractions
6.3.4.1.DPPH radical-scavenging activity of peptide fractions
6.3.4.2.ABTS radical scavenging activity of peptide fractions
6.3.4.3.Ferric reducing antioxidant power(FRAP)
6.4.Conclusions
6.5.References
CHAPTER SEVEN General conclusions and recommendation
Key innovations of thesis
Recommendations
List of Publications
本文编号:3208020
【文章来源】:江南大学江苏省 211工程院校 教育部直属院校
【文章页数】:169 页
【学位级别】:博士
【文章目录】:
ACKNOWLEDGMENT
DEDICATION
LIST OF IMPORTANT ABBREVIATIONS
ABSTRACT
摘要(Chinese abstract)
CHAPTER ONE GENERAL INTRODUCTION AND LITERATURE REVIEW
1.1.Introduction
1.2.Preparation of protein hydrolysates by enzymatic hydrolysis
1.3.Degree of hydrolysis
1.4.Nutritional composition of protein hydrolysates
1.4.1.Proximate composition
1.4.2.Amino acids content
1.5.Functional properties of fish protein hydrolysates
1.5.1.Solubility
1.5.2.Emulsifying properties
1.5.3.Foaming properties
1.5.4.Water and oil holding capacity
1.6.Antioxidant activities of FPH
1.7.Structural and physicochemical properties of fish protein hydrolysate
1.8.Separation and purification of peptides
1.8.1.Fractionation and purification of active peptides
1.8.2.Identification of purified peptide
1.9.Application of ultrasonic and microwave in protein hydrolysate preparation
1.9.1 Ultrasonic treatment
1.9.2.Microwave treatment
1.10.Significance of the research topic
1.11.General objective of the study
1.12.Specific objective of the study
1.13.Reference
CHAPTER TWO Influence of enzymatic hydrolysis conditions on the degree of hydrolysis and functional properties of protein hydrolysate from a hybrid sturgeon(Acipenser ruthenus Linnaeus x Huso dauricus(Georgi))by using papain enzyme
2.1.Introduction
2.2.Materials and methods
2.2.1.Samples
2.2.2.Enzyme and chemicals
2.2.3.Proximate chemical composition
2.2.4.Amino acid analysis
2.2.5.Fatty acid profile analysis
2.2.6.Preparation of protein hydrolysates
2.2.7.Determination of the degree of hydrolysis
2.2.8.Yield
2.2.9.Determination of the molecular weight distributions
2.2.10.Functional properties of FPH
2.2.11.Statistical analysis
2.3.Results and discussion
2.3.1.Proximate chemical composition
2.3.2.Amino acid analysis
2.3.3.Fatty acid composition of sturgeon oil
2.3.4.Optimization of enzymatic hydrolysis conditions
2.3.5.Yield
2.3.6.Molecular weight distribution
2.3.7.Functional properties
2.4.Conclusion
2.5.References
CHAPTER THREE Influence of degree of hydrolysis on chemical composition,functional properties,and antioxidant activities of sturgeon(Acipenser ruthenus Linnaeus x Huso dauricus(Georgi))protein hydrolysates obtained by using Alcalase2.4L
3.1.Introduction
3.2.Materials and methods
3.2.1.Samples and chemicals
3.2.2.Preparation of sturgeon muscle
3.2.3.Preparation of protein hydrolysates
3.2.4.Determination of the degree of hydrolysis
3.2.5.Yield and color measurement
3.2.6.Proximate composition of protein hydrolysates
3.2.7.Amino acid composition analysis
3.2.8.Determination of the molecular weight distribution
3.2.9.Functional properties determination
3.2.10.Determination of antioxidant activities
3.2.11.Statistical analysis
3.3.Results and discussion
3.3.1.Optimization of hydrolysis conditions
3.3.2.Average yield and color of hydrolysates
3.3.3.Proximate composition of hydrolysates
3.3.4.Amino acids composition
3.3.5.Molecular mass distribution
3.3.6.Functional properties of sturgeon protein hydrolysates
3.3.7.Antioxidant activities of sturgeon protein hydrolysates
3.4.Conclusions
3.5.References
CHAPTER FOUR Structural and physicochemical characteristics of lyophilized sturgeon protein hydrolysates prepared by using two different enzymes
4.1.Introduction
4.2.Material and methods
4.2.1 Materials
4.2.2.Preparation of samples and lyophilized protein hydrolysates
4.2.3.Determination of degree of hydrolysis and protein hydrolysate yield
4.2.4.Particle size distribution
4.2.5.Zeta potential measurements
4.2.6.Determination of peptide molecular weights
4.2.7.Surface hydrophobicity and turbidity
4.2.8.X-Ray Diffraction(XRD)
4.2.9.Fourier transform infrared spectroscopy
4.2.10.Differential scanning calorimetry
4.2.11.Thermal-gravimetric analyses
4.2.12.Scanning electron microscopy
4.2.13.Statistical analysis
4.3.Results and discussion
4.3.1.Degree of hydrolysis and protein hydrolysate yield
4.3.2.Particle size distribution
4.3.3.Zeta potential measurements
4.3.4.Molecular weight distribution
4.3.5.Surface hydrophobicity and turbidity
4.3.6.X-Ray Diffraction
4.3.7.Fourier transform infrared spectroscopy
4.3.8.Differential scanning calorimetry
4.3.9.Thermal gravimetric analyses
4.3.10.Scanning electron microscopy
4.4.Conclusions
4.5.References
CHAPTER FIVE Effects of ultrasonic,microwave and combined ultrasonic-microwave pretreatments on the protein hydrolysate properties from sturgeon(Acipenser ruthenus Linnaeus x Huso dauricus(Georgi))
5.1.Introduction
5.2.Materials and methods
5.2.1.Materials
5.2.2.Ultrasonic and microwave equipment
5.2.3.Samples preparation
5.2.4.Preparation of protein hydrolysates
5.2.5.Degree of Hydrolysis
5.2.6.Yield of protein hydrolysates
5.2.7.Determination of amino acids profile
5.2.8. Distribution of the molecular weights
5.2.9.Solubility of protein hydrolysates
5.2.10.Determination of antioxidant activities
5.2.11.Statistical Analysis
5.3.Results and Discussions
5.3.1.Influence of pretreatments on the degree of hydrolysis
5.3.2.Influence of optimal conditions on DH
5.3.3.Yield
5.3.4.Amino acids profile
5.3.5.Molecular weights description
5.3.6.Solubility of protein hydrolysates
5.3.7.Antioxidant activities of hydrolysates
5.4.Conclusions
5.5.References
CHAPTER SIX Antioxidant properties of filtration membranes fractions obtained from sturgeon(Acipenser ruthenus Linnaeus x Huso dauricus(Georgi))proteins hydrolysates
6.1.Introduction
6.2.Material and methods
6.2.1 Materials
6.2.2.Preparation of sturgeon protein hydrolysates
6.2.3.Measurement of the degree of hydrolysis
6.2.4.Amino acid composition analysis
6.2.5.Characterization of antioxidant peptides
6.2.5.1.Fractionation
6.2.5.2.Antioxidant properties
6.2.6.Statistical analysis
6.3.Results and discussion
6.3.1.Degree of hydrolysis
6.3.2.Amino acid composition
6.3.3.Antioxidant activities of protein hydrolysates
6.3.3.1.DPPH radical scavenging activity
6.3.3.2.ABTS radical scavenging activity
6.3.4.Antioxidant properties of peptide fractions
6.3.4.1.DPPH radical-scavenging activity of peptide fractions
6.3.4.2.ABTS radical scavenging activity of peptide fractions
6.3.4.3.Ferric reducing antioxidant power(FRAP)
6.4.Conclusions
6.5.References
CHAPTER SEVEN General conclusions and recommendation
Key innovations of thesis
Recommendations
List of Publications
本文编号:3208020
本文链接:https://www.wllwen.com/projectlw/qgylw/3208020.html