当前位置:主页 > 理工论文 > 轻工业论文 >

Modelling Drying Kinetics and Ameliorative Effects of Contro

发布时间:2023-04-01 00:24
  本课题是为了了解干燥动力学并通过相对湿度(RH)来确定干燥技术中植物化学降解和褐变色素沉着的改善机制。利用新设计的RH-对流-热风干燥器,在不同的RH条件下对选定的农产品进行干燥,使之成为可能。在第一个研究中,利用8个数学模型预测了香蕉在RH(10%20%30%和40%)、70°C和2.0 m/s风速下的干燥动力学。利用相关系数(R2)、根均方误差(RMSE)和还原卡方(χ2)等主要参数,检验了模型的拟合优度。结果表明,Midillii-kucuk模型能够较好地描述R2、RMSE对香蕉切片的RH-对流干燥,其范围分别为0.99942-0.99986、0.00002-0.00008和0.0142-0.01618。电能分析表明,RH每增加10%,能耗就会增加17.9-4.0%,从而在两者之间建立了直接关系。差示扫描量热法测得的热图结果表明,干香蕉的成分、粒度和在基质中的分散受到RH变化的影响,从而引起了固体转变的变化。这又一次影响了香蕉的结晶度,使得相对于相对湿度较高的干燥样品,相对湿度较低的干燥样品更脆。为了了解RH在迈拉...

【文章页数】:244 页

【学位级别】:博士

【文章目录】:
ACKNOWLEDGEMENT
ABSTRACT
摘要
Nomenclature
CHAPTER 1 GENERAL INTRODUCTION AND PROJECT OBJECTIVES
    1.1 Introduction
    1.2 Main Objectives and Technical roadmap
    1.3 Organization of dissertation
    1.4 Reference
CHAPTER 2 LITERATURE REVIEW
    2.1 INTRODUCTION
    2.2 Drying technology
    2.3 Conventional hot-air drying system
    2.4 Challenges associated with convectional drying system
    2.5 New improved HAD dryers in the drying industry.
    2.6 Principles of Relative humidity controlled (RH) dryer
    2.7 Dying research using RH drying conditions
    2.8 Pretreatment in drying
    2.9 Phytochemicals
    2.10 Drying research involving phytochemical degradations.
        2.10.1 β-carotene degradation
        2.10.2 Vitamin C degradation
        2.10.3 Polyphenols degradation
        2.10.4 Antioxidant degradation
    2.11 Browning pigmentation in HAD
        2.11.1 Enzymatic browning (EBI)
        2.11.2 Non-enzymatic browning (NBI)
    2.12 Reference
CHAPTER 3 MODELING DRYING CHARACTERISTICS, ENERGY CONSUMPTION AND THERMAL PROPERTIES OF DRIED BANANA (MUSA SSP.) UNDER DIFFERENT RELATIVE HUMIDITY
    3.1 Introduction
    3.2 Materials and Methods
        3.2.1 Preparation of Samples
        3.2.2 Drying with Relative humidity (RH) convective control hot-air dryer
        3.2.3 Experimental design for drying
        3.2.4 Modeling of drying kinetics
        3.2.5 Effective moisture diffusivity calculation
        3.2.6 Energy consumption
        3.2.7 Differential scanning calorimetry (DSC)
        3.2.8 Statistical analysis
    3.3 Results and Discussion
        3.3.1 Effect of RH on Dying Curves
        3.3.2 Fitting of the drying curves
        3.3.3 Effective moisture diffusivity (Deff)
        3.3.4 Energy consumption
        3.3.5 Effect of RH on characteristics of DSC thermogram
    3.4 Conclusion
    3.5 Reference
CHAPTER 4 MITIGATING EFFECT OF RELATIVE HUMIDITY (RH) ON 2-FUROYLMETHYL-AMINO ACID FORMATION
    4.1. Introduction
    4.2. Materials and Methods
        4.2.1 Drying with humidity control convective hot-air dryer.
        4.2.2 Determination of 2-furoylmethyl amino acids (2-FM-AA)
        4.2.3 Kinetics models and parameters for 2-furoylmethyl amino acids formation
        4.2.4 Thermodynamic analysis 2-furoylmethyl amino acids formation
        4.2.5 Browning assessments
        4.2.6 Color measurements
        4.2.7 Fourier transform infrared (FT-IR) spectroscopy
        4.2.8 Statistical analysis
    4.3. Results and discussions
        4.3.1 Mitigating effect of RH on 2-furoylmethyl amino acids formation
        4.3.2 Formation kinetics of 2-furoylmethyl amino acids
        4.3.3 Thermodynamic analysis of 2-furoylmethyl amino acids
        4.3.4 Mitigating effect of RH on color parameters and browning index
        4.3.5 Multivariate analysis of color, browning index and 2-furoylmethyl amino acids formation
        4.3.6 Effect of RH on functional group revealed by FT-IR spectroscopy
    4.4. Conclusion
    4.5. Reference
CHAPTER 5 DRYING CHARACTERISTIC, ENZYME INACTIVATION AND BROWNING PIGMENTATION KINETICS OF CONTROLLED HUMIDITY-CONVECTIVE DRYING OF BANANA SLICES
    5.1 Introduction
    5.2 Materials and Methods
        5.2.1 Preparation of Samples
        5.2.2 Ultrasound pretreatments
        5.2.3 Drying with Relative humidity (RH) convective hot-air dryer
        5.2.4 Calculation of moisture effective diffusivity (Deff)
        5.2.5 Enzyme inactivation
            5.2.5.1 Enzyme extraction
            5.2.5.2 Enzyme Assays
            5.2.5.3 Kinetics models of enzyme inactivation
        5.2.6 Browning assessments
            5.2.6.1 Enzymatic browning Index (EBI) and Non- enzymatic browning index (NBI)
            5.2.6.2 Kinetics models of browning assessments
        5.2.7 Quality assessment
            (1) Color measurements
            (2) Texture
            (3) Microstructure evaluation with scanning electron microscopy (SEM)
        5.2.8 Statistical analysis
    5.3 Results and Discussion
        5.3.1 Effect of US and RH on Drying Curves
        5.3.2 Influence of US and RH on effective moisture diffusivity (Deff)
        5.3.3 Influence of US and RH and on enzymes inactivation
        5.3.4 Enzymes inactivation kinetics
        5.3.5 Influences of US and RH on Browning pigmentation
        5.3.6 Browning indexes kinetics
        5.3.7 Influence of US and RH on Color and texture parameters
        5.3.8 Influences of RH and US on microstructure
    5.4 Conclusion
    5.5 References
CHAPTER 6 MITIGATION OF ENERGY CONSUMPTION AND BROWNING PIGMENTATION THROUGH ETHYL OLEATE AND ULTRASONIC PRETREATMENTS IN DEHYDRATED BANANA
    6.1. Introduction
    6.2. Materials and Methods
        6.2.1 Preparation of Samples
        6.2.2 Ultrasonic and Ethyl oleate pretreatments
        6.2.3 Experimental design
        6.2.4 Drying with Relative humidity (RH) convective hot-air dryer
        6.2.5 Calculation of moisture effective diffusion (Deff)
        6.2.6 Energy consumption
        6.2.7 Enzyme extraction and assay
        6.2.8 Color
        6.2.9 Browning assessments
        6.2.10 Statistical analysis
    6.3. Result and Discussion
        6.3.1 Effect of US and ethyl oleate pretreatment on Drying Curves
        6.3.2 Effect of US and ethyl oleate pretreatment on Energy consumption and moisture effective diffusion
        6.3.3 Influence of US and ethyl oleate on enzymes inactivation
        6.3.4 Influence of US and ethyl oleate on color and browning pigmentation
        6.3.5 Multivariate analysis
    6.4. Conclusion
    6.5. Reference
CHAPTER 7 THE KINETICS STUDY OF BIOACTIVE COMPOUNDS AND ANTIOXIDANT DEGRADATION OF DRIED BANANA(MUSA SSP.) SLICES USING CONTROLLED HUMIDITY CONVECTIVE AIR DRYING.
    7.1 Introduction
    7.2 Materials and Methods
        7.2.1 Preparation of Samples
        7.2.2 Drying with humidity control convective hot-air dryer.
        7.2.3 Calculation of moisture effective diffusion (Deff)
        7.2.4 Extraction of bioactive compounds and antioxidant
            7.2.4.1 Antioxidant capacity
            7.2.4.2 Total Phenolic content (TPC)
            7.2.4.3 Total flavonoids content (TFC)
        7.2.5 Kinetics models for bioactive compounds and antioxidant degradation
        7.2.6 Color measurements
        7.2.7 Texture
        7.2.8 Statistical analysis
    7.3 Results and discussion
        7.3.1 Effect of RH on bioactive compounds and antioxidant
        7.3.2 Degradation kinetics of bioactive and antioxidant compounds
        7.3.3 Influence of RH on drying kinetics of banana slices
        7.3.4 Influence of RH on effective moisture diffusivity (Deff)
    7.4 Conclusion
    7.5 Reference
CHAPTER 8 MODELING OF DRYING AND AMELIORATIVE EFFECTS OF RELATIVE HUMIDITY (RH) AGAINST β-CAROTENE DEGRADATION AND COLOR OF CARROT (DAUCUS CAROTA VAR) SLICES)
    8.1 Introduction
    8.2 Material and Methods
        8.2.1 Raw Material
        8.2.2 Drying with humidity control convective hot-air dryer.
        8.2.3 Modeling of drying kinetics
        8.2.4 Calculation of moisture effective diffusion (Deff)
        8.2.5 Activation energy ()
        8.2.6 Determination of β-carotene
        8.2.7 Kinetics models for β-carotene degradation
        8.2.8 Thermodynamic analysis of β-carotene degradation
        8.2.9 Color measurements
        8.2.10 Statistical analysis
    8.3 Results and discussions
        8.3.1 Influence of RH on drying kinetics of carrot slices
        8.3.2 Evaluation of drying mathematical models
        8.3.3 Effective moisture diffusivity (Deff)
        8.3.4 Activation energy
        8.3.5 Degradation kinetics of β-carotene
        8.3.6 Thermodynamic analysis of β-carotene degradation
        8.3.7 Effect of RH on color parameters
        8.3.8 Correlation between β-carotene and color parameters
    8.4 Conclusion
    8.5 Reference
CHAPTER 9 DRYING KINETICS AND AMELIORATIVE EFFECT OF RELATIVE HUMIDITY (RH) ON PHENOLIC, VITAMIN C,ANTIOXIDANT AND FUNCTIONAL GROUPS OF DRIED PINEAPPLE (ANANAS COMOSUS) SLICES
    9.1 Introduction
    9.2 Materials and Methods
        9.2.1 Chemicals and Reagents
        9.2.2 Preparation of Samples
        9.2.3 Drying with humidity control convective hot-air dryer.
        9.2.4 Modeling of drying kinetics
        9.2.5 Extraction of phenolic compounds in pineapple slices
        9.2.6 HPLC-DAD analysis
        9.2.7 Total phenolic contents (TPC)
        9.2.8 Total flavonoid contents (TFC)
        9.2.9 Antioxidant activity assays
            9.2.9.1 DPPH free radical assay
            9.2.9.2. Ferric reducing antioxidant power (FRAP)
            9.2.9.3 Reducing power capacity
        9.2.10 Determination of vitamin C
        9.2.11 Kinetics models and parameters for vitamin C degradation
        9.2.12 Color measurements
        9.2.13 Fourier transform infrared (FT-IR) spectroscopy
        9.2.14 Statistical analysis
    9.3 Results and discussions
        9.3.1 Influence of RH on drying kinetics of pineapple slices
        9.3.2 Evaluation of drying mathematical models
        9.3.3 Mitigating effect of RH on phytochemical, color and antioxidant concentrations
        9.3.4 Mitigating effect of RH on Phenolic profile
        9.3.5 Correspondence analysis
        9.3.6 Mitigating effect of RH on functional group revealed by FT-IR spectroscopy
        9.3.7 Mitigating effect of RH of vitamin C degradation
    9.4 Conclusion
    9.5 Reference
CHAPTER 10 GENERAL CONCLUSION AND RECOMMENDATION
    10.1 Modelling drying kinetics in RH-hot air dyer
    10.2 Browning pigmentation
    10.3 Phytochemical degradation
    10.4 NOVELTY
Published Articles



本文编号:3776086

资料下载
论文发表

本文链接:https://www.wllwen.com/projectlw/qgylw/3776086.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户29fe8***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com