当前位置:主页 > 社科论文 > 逻辑论文 >

基于判断聚合模型的推荐系统冷启动问题研究

发布时间:2018-06-05 21:16

  本文选题:判断聚合模型 + 推荐系统 ; 参考:《湖北大学学报(哲学社会科学版)》2016年02期


【摘要】:推荐系统是目前解决用户信息过载的主要工具,协同过滤算法是推荐系统中应用最为广泛的技术,它主要依赖用户已有的历史数据为其寻找有相似的其他用户,然而,当遇到新用户第一次访问的情况下,这类技术一般很难给出恰当的推荐,这就是著名的用户冷启动问题。运用判断聚合理论的技术手段把已有用户的行为数据聚合成为集体判断集,然后将这个集体判断集推送给新用户,新用户根据自身的偏好购买感兴趣的物品,这一方法既解决了新用户的冷启动问题,又丰富和拓展了推荐系统的功能。
[Abstract]:Recommendation system is the main tool to solve the overload of user information at present. Collaborative filtering algorithm is the most widely used technology in recommendation system. When a new user visits for the first time, it is difficult to give a proper recommendation for this kind of technology, which is the well-known cold start problem. Using the technology of judgment aggregation theory, the behavior data of existing users are aggregated into collective judgment sets, and then the collective judgment sets are pushed to new users, who buy items of interest according to their preferences. This method not only solves the cold start problem of new users, but also enriches and expands the function of recommendation system.
【作者单位】: 西南大学逻辑与智能研究中心;
【基金】:西南大学人文社会科学重要研究项目(编号:12XDSKZ003)的资助
【分类号】:B812


本文编号:1983428

资料下载
论文发表

本文链接:https://www.wllwen.com/shekelunwen/ljx/1983428.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户d4bf7***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com