基于随机共振模型的网络舆情共振现象研究
发布时间:2018-05-10 21:40
本文选题:网络舆情 + 网络舆情演变 ; 参考:《南京理工大学》2017年硕士论文
【摘要】:随着信息技术的快速发展,互联网环境下的舆情问题被广泛研究,学者们从不同视角取得了丰硕的研究成果,其中主要包括网络舆情定义、成因、特征、演变以及舆情预警、预测等方面内容。但就目前已有的研究成果来看,学者对于网络舆情的讨论通常都是将其视为单一事件在单一轨迹上的发展过程,对于原生舆情事件在不同因素影响下出现的后继衍生舆情事件及多个舆情事件之间的关联关系研究较少。网民因某些涉事主体、情绪或议题相似的多个事件而产生的情绪会彼此感染,当相同或相似的情绪大量积累后,便会发生舆情共振现象。从现实生活中发生的事件来看,网络舆情共振现象对社会造成的二次影响很可能比原来单一的网络舆情事件造成的社会危害更大、破坏力更强,造成1+12的后继效应,因此加强网络共振现象研究,对监督社会情绪表达和网络舆论具有重要的作用。虽然目前学者已经展开了对于舆情共振现象的定性研究,但对于从微观层面分析舆情共振规律的研究仍少之又少。基于此,本文重点研究了网络舆情原生事件与次生事件的共振现象,关注舆情共振过程中区域文化、人群特征、政府及网络媒体介入等因素对舆情共振的影响。网络舆情共振与物理共振十分相似,在网络舆情中,各类信息分子不停地做无规则的运动,受到舆情事件(如同花粉颗粒)不断地随机撞击,使得舆情事件的话题随机地向各个方向"游走",而随机共振理论是朗之万在研究布朗运动时,建立的以微分方程为数学模型的理论基础;网络舆情的发展趋势通常为"起始-上涨-高潮-消退",类似于随机共振理论所描述的双稳态系统的两个势阱与一个势垒。因此,本文以物理学中随机共振模型为理论基础,建立舆情共振方程,分析引发因素对舆情共振的影响,依托仿真实验探索舆情共振规律。仿真结果表明,不同区域不同议题网络舆情共振的结果不同,并且意见领袖、执法部门、当事人、媒体的态度将会影响能否共振,以及共振的振幅。在理论研究的基础上,本文采集了2013年乙肝疫苗事件及2016年山东疫苗事件在新浪微博上的真实数据,对数据进行处理、测算,据此对案例进行分析,观察本文推算结果是否与舆情事件在现实生活演变过程中出现的共振效应相契合,以此来验证本文构建的网络舆情共振模型的合理性、实用性。结果显示,本文提出的网络舆情共振模型基本能够描述现实社会中发生的网络舆情共振现象规律。
[Abstract]:With the rapid development of information technology, the issue of public opinion in the Internet environment has been widely studied. Scholars have obtained fruitful research results from different perspectives, including the definition, causes, characteristics, evolution and early warning of public opinion. Prediction and other aspects. But as far as the existing research results are concerned, scholars' discussion of network public opinion is usually regarded as the development process of a single event on a single track. There is little research on the relationship between the derivative public opinion events and the multiple public opinion events under the influence of different factors. When the same or similar emotions accumulate, public opinion resonance will occur. From the point of view of the events in real life, the secondary influence of the phenomenon of network public opinion resonance on the society is likely to be greater and more destructive than the original single network public opinion event, resulting in a successor effect of 1 / 12. Therefore, strengthening the study of network resonance plays an important role in supervising social emotion expression and network public opinion. Although scholars have carried out qualitative research on the phenomenon of public opinion resonance, there are few researches on analyzing the law of public opinion resonance from the micro level. Based on this, this paper focuses on the resonance between primary and secondary events of network public opinion, and focuses on the influence of regional culture, crowd characteristics, government and network media intervention on public opinion resonance in the process of public opinion resonance. The network public opinion resonance is very similar to the physical resonance. In the network public opinion, all kinds of information molecules keep doing irregular movement, and they are hit by public opinion events (such as pollen grains) at random. It makes the topic of public opinion event "walk" to every direction at random, and the stochastic resonance theory is the theoretical foundation of Langevan's mathematical model based on differential equation when studying Brownian motion. The trend of network public opinion is usually "initial-upper-climax extinction", which is similar to two potential wells and one barrier of bistable system described by stochastic resonance theory. Therefore, based on the stochastic resonance model in physics, this paper establishes the equation of public opinion resonance, analyzes the influence of trigger factors on public opinion resonance, and explores the law of public opinion resonance based on simulation experiment. The simulation results show that the results of network public opinion resonance are different in different regions and different topics, and the attitude of opinion leaders, law enforcement agencies, parties and media will affect the resonance and the amplitude of the resonance. On the basis of theoretical research, this paper collected the real data of hepatitis B vaccine event in 2013 and Shandong vaccine event in 2016 on Sina Weibo, processed the data, calculated and analyzed the case. Whether the result of this paper is consistent with the resonance effect of public opinion event in the process of real life evolution is observed to verify the rationality and practicability of the network public opinion resonance model constructed in this paper. The results show that the network public opinion resonance model proposed in this paper can basically describe the phenomenon of network public opinion resonance in real society.
【学位授予单位】:南京理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:C913.4
【参考文献】
相关期刊论文 前10条
1 胡改丽;陈婷;陈福集;郑小雪;;我国网络舆情热度分析文献综述[J];情报科学;2016年01期
2 陈丹月;罗彬;;自媒体视域下微博与受众情绪共振[J];新闻世界;2015年06期
3 郭颖旦;丁望峰;杨建宋;;朗之万方程在布朗运动数值模拟中的时间尺度分析[J];杭州师范大学学报(自然科学版);2015年02期
4 李倩倩;黄远;姜景;沈乾;;中国网络社会治理的舆论指数[J];中国科学院院刊;2015年01期
5 任立肖;张亮;杜子平;李杨;;复杂网络上的网络舆情演化模型研究述评[J];情报科学;2014年08期
6 张伟;何明升;白淑英;金蕊;;基于Weisbuch-Deffuant模型的网络舆论演化模式研究[J];情报杂志;2013年07期
7 甘旭升;崔浩林;吴亚荣;;基于功能共振事故模型的航空事故分析[J];中国安全科学学报;2013年07期
8 孙帅;周毅;;2008-2012年国内突发事件网络舆情管理研究综述[J];电子政务;2013年05期
9 焦尚彬;何童;;基于双稳随机共振的多频弱信号检测[J];计算机工程与应用;2014年05期
10 陈桂茸;蔡皖东;徐会杰;晏沛湘;王剑平;;网络舆论演化的高影响力优先有限信任模型[J];上海交通大学学报;2013年01期
相关博士学位论文 前1条
1 张静;基于复杂网络的微博用户群体行为研究[D];北京邮电大学;2015年
,本文编号:1871011
本文链接:https://www.wllwen.com/shekelunwen/shgj/1871011.html