联轴器对内燃机轴系扭振影响及减振研究
[Abstract]:After the concept of "Belt and Road, Railway first" was put forward, the development of diesel locomotives ushered in new opportunities and challenges. The coupling is the key component of connecting shafting and transmitting torque in internal combustion engine shafting. In the actual operation of diesel locomotive, torsional resonance occurs in the starting condition of shafting and failure of coupling occurs frequently. Therefore, the use of coupling in shafting is of great significance to the safety and reliability of shafting. Taking the shaft coupling of typical diesel locomotive powertrain as the research object, the parameter characteristics of the large stiffness coupling and the high elastic coupling are compared, and the method of simulating the torsional vibration of the shaft system and testing the torsional vibration is adopted. The effect of coupling on torsional vibration characteristics of internal combustion engine shafting is studied. Combined with the simulation and experimental results, the torsional vibration characteristics of the internal combustion engine shaft system corresponding to the fixed stiffness rubber coupling, the spring damping coupling and the large stiffness coupling are analyzed, and the optimization matching strategies of the three types of coupling and shafting are studied. The torsional vibration modes of the three types of coupling shafting all avoid the 3.0 main harmonic excitation of the internal combustion engine, but the 6.0 harmonic or the low 1.0 and 0.5 harmonic excitations of the internal combustion engine will resonate with the shafting. Aiming at the common problem that the impact moment of spring damping coupling is difficult to be measured at the active and passive end, a method of force measurement based on dynamic torsional angle difference and angular acceleration is proposed. The dynamic torsional angle difference and force of shafting coupling are tested and analyzed. The torsional vibration alternating moment, transient inertia moment and impact moment of shafting coupling are obtained. The test results show that the maximum alternating torsional angle difference between peak and peak reaches 31 掳, and the maximum torsional angle is 15.7 掳at the active and passive ends of the coupling. It is proved that the spring damping coupling is the main part of the spring damping coupling under the starting condition. There may be a transient collision at the passive end, corresponding to a maximum inertia torque of 9914 Nm. In view of the failure of spring damping coupling in practical application, the pretightening force of spline sleeve bolt of coupling is checked, and the finite element model of spring damping coupling is established. The maximum inertia moment of coupling under start-up condition is obtained by using the test results of torsional angle difference of coupling. The stress at failure point of coupling is analyzed, and the service life of coupling is estimated by S-N method. The failure stress value is smaller than the yield limit of the coupling, but larger than its fatigue strength limit, so it may cause fatigue failure of the coupling. An optimal matching strategy for shafting with continuous variable stiffness coupling is proposed and successfully applied in a certain internal combustion engine shafting. The shafting matching continuous variable stiffness coupling can not only avoid the main harmonic excitation frequencies such as 3.0 and 6.0 of the internal combustion engine, but also avoid the low harmonic torsional resonance of 1.0 and 0.5 harmonics. The torsional amplitude of the shafting components is controlled effectively, the torsional amplitude of the shafting meets the limit value under the fault condition, and the torsional angle difference between the two ends of the coupling is obviously optimized under the starting condition. To sum up, the test method of coupling force based on dynamic torsional angle difference and angular acceleration is put forward in this paper, which can be used to test the conventional force and impact moment of coupling. An optimal matching strategy for shafting with continuous variable stiffness coupling is proposed, and good results of torsional vibration optimization are obtained.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U262
【参考文献】
相关期刊论文 前10条
1 徐晓刚;;出口孟加拉的新型米轨内燃交流传动动车组[J];中国铁路;2015年04期
2 叶嘉;李涛;曾志龙;陈奕;;轴系扭转振动测试技术研究综述[J];船舶工程;2014年05期
3 李晓茜;王刚;吕秉琳;柴卓野;李玩幽;;短路工况下柴油发电机组轴系扭振计算方法及特性研究[J];内燃机工程;2013年02期
4 邓晓晓;张保成;;内燃机轴系扭转振动综述[J];汽车零部件;2012年01期
5 刘宝;杨雪静;李岩;;汽轮发电机组轴系扭振动态响应计算分析[J];机电工程技术;2011年12期
6 汪萌生;周瑞平;徐翔;;柴油发电机组轴系扭振特性的调频处理[J];中国修船;2011年02期
7 刘辉;项昌乐;;弹性联轴器对动力传动系统扭振特性影响研究[J];机械强度;2009年03期
8 孟宗;刘彬;;回转机械动态扭矩非接触测量的研究[J];计量学报;2006年04期
9 贾小勇;徐传胜;白欣;;最小二乘法的创立及其思想方法[J];西北大学学报(自然科学版);2006年03期
10 宋志峰,梅顺齐;转轴扭振测量方法研究[J];现代制造工程;2005年09期
相关博士学位论文 前1条
1 华春蓉;内燃机曲轴角振动模态识别方法的研究及应用[D];西南交通大学;2011年
相关硕士学位论文 前10条
1 刘景明;高速柴油发电机组轴系联轴器参数匹配研究[D];西南交通大学;2015年
2 潘飞;新型钢丝绳弹性联轴器设计及其弹性阻尼元件特性试验研究[D];重庆大学;2015年
3 张敬义;内燃机轴系弹联参数设计方法研究[D];西南交通大学;2012年
4 陈超;汽车发动机曲轴系统扭转振动分析与减振器匹配的研究[D];华南理工大学;2012年
5 石明友;高速列车联轴器开发与研究[D];江苏科技大学;2012年
6 周硕琳;4100柴油机扭振及简谐力矩特性分析[D];西南交通大学;2011年
7 熊龙成;新型中速柴油机监测诊断技术研究[D];武汉理工大学;2009年
8 籍庆辉;车辆传动系扭振特性的多体动力学研究[D];重庆大学;2008年
9 郭钢利;汽轮发电机组轴系扭振测量与分析[D];华北电力大学(北京);2005年
10 安晓虹;特殊长方矩阵的极小范数最小二乘解及其左逆和右逆的快速算法[D];西北工业大学;2004年
,本文编号:2145591
本文链接:https://www.wllwen.com/shekelunwen/ydyl/2145591.html