当前位置:主页 > 社科论文 > 一带一路论文 >

基于GF-4卫星影像时序光谱特征的居民地信息提取研究

发布时间:2019-03-24 15:37
【摘要】:随着“一带一路”与新型城镇化战略决策的推动与实施,中国在未来几十年中发展的空间格局将发生巨大改变。自1978年改革开放以来,我国的经济迅猛增长,在短时间内跃居全球前列,社会和谐发展,国民的生活质量有了明显的提升,居民地的扩张速度也愈来愈快。对居民地进行快速准确地识别和提取在推进国家战略决策,实现数字城市,辅助城市规划等多个领域具有重大的现实意义。高分四号(GF-4)卫星作为我国实施高分辨率对地观测系统的重要组成部分,能够及时有效识别地面变化,有效支撑地震、洪涝、干旱、台风等自然灾害救助、气候变化研究、林业及水资源环境调查等重大行业应用。本论文利用GF-4卫星影像,结合其高时谱这一特性,提取并分析居民地与其他地类的光谱特征差异,并结合时序光谱使用不同方法对居民地信息进行识别和提取。论文从以下几个部分展开:首先,介绍了本论文的研究背景和意义,再介绍与论文主题息息相关的遥感信息提取技术和居民地识别提取技术的研究现状与进展,并提出研究内容及技术路线。接着,介绍了GF-4卫星影像,并对影像进行预处理以消除来自各方面的误差。然后,通过对GF-4影像的典型地物光谱指数特征的分析,提出基于光谱特征决策树的居民地信息提取方法,进而对时序光谱指数特征进行分析,提出基于时序光谱特征决策树的居民地信息提取方法,在此基础上将时序光谱指数特征和深度学习技术同时引入居民地信息识别提取中,提出基于时序光谱特征全卷积神经网络的居民地信息提取方法。最终对三种方法的实验结果进行对比分析,得出结论。通过上述研究的开展,本论文可得到以下主要结论:(1)太阳高度角的变化不仅仅影响了地物光谱的大小,甚至对地物光谱的变化率大小和变化率变化的快慢也有一定的影响,且不同地物类型的光谱特征随太阳高度角的变化特征也有所不同。(2)当使用决策树方法时,结合时序光谱特征对居民地信息进行提取相较于仅结合光谱特征的提取来说,将提取精度由89.85%提升到93.38%。(3)利用全卷积神经网络可提升基于时序光谱特征居民地信息提取的提取精度,提取精度由93.38%提升到95.15%。此外,本论文有以下创新点:(1)将时序光谱特征与太阳高度角的关系引入到决策树模型中,相比较仅利用光谱特征的居民地提取方法而言,精度有所提高。(2)将时序光谱特征与深度学习中全卷积神经网络方法相结合,较不考虑时序光谱特征或不采用深度学习的其他提取方法来说,更加提升了分类提取精度。研究基于GF-4卫星遥感影像时序光谱的居民地识别提取方法,为减灾、防灾、推进城镇化进程、城市精细化管理和国土资源管理等工作快速提供动态更新数据,并为我国国产高分系列卫星数据遥感产品的应用提供技术与方法支撑和示范指导作用。
[Abstract]:With the promotion and implementation of "The Belt and Road Initiative" and the strategic decision of new urbanization, the spatial pattern of China's development in the coming decades will be greatly changed. Since the reform and opening up in 1978, the economy of our country has been growing rapidly, it has leaped to the forefront of the world in a short period of time, the harmonious development of the society, the quality of life of the people has been obviously improved, and the speed of the expansion of the residential land has also become more and more rapid. Rapid and accurate identification and extraction of residential land is of great practical significance in promoting national strategic decision-making, realizing digital city, assisting urban planning and so on. As an important part of China's high-resolution Earth observation system, the GF-4 satellite can effectively identify ground changes in a timely manner and effectively support natural disasters such as earthquakes, floods, droughts, typhoons, and so on. Climate change research, forestry and water resources environmental survey and other major industry applications. In this paper, we use GF-4 satellite image and its high-time spectrum to extract and analyze the difference of spectral features between residential land and other land classes, and use different methods to identify and extract resident land information combined with temporal spectrum. The thesis starts from the following parts: firstly, this paper introduces the research background and significance of this paper, and then introduces the research status and progress of remote sensing information extraction technology and residential identification extraction technology, which are closely related to the subject of the thesis. And put forward the research content and technical route. Then, the GF-4 satellite image is introduced, and the image is pre-processed to eliminate the errors from various aspects. Then, by analyzing the spectral index characteristics of typical ground objects in GF-4 images, a method of extracting resident land information based on spectral feature decision tree is proposed, and then the temporal spectral index features are analyzed. A method of extracting resident land information based on temporal spectral feature decision tree is proposed. On the basis of this method, temporal spectral index feature and depth learning technology are introduced into the identification and extraction of residential information at the same time. A method of extracting resident land information based on full convolution neural network based on temporal spectral features is proposed in this paper. Finally, the experimental results of the three methods are compared and analyzed, and a conclusion is drawn. The main conclusions of this paper are as follows: (1) the change of solar height angle not only affects the spectral size of the ground object, Even it has some influence on the spectral variation rate and the rate of change, and the spectral characteristics of different feature types vary with the solar height angle. (2) when the decision tree method is used, the spectral characteristics of the ground features vary with the solar height angle. (2) when the decision tree method is used, the spectral characteristics of the ground features vary with the solar height angle. Compared with the extraction of spectral features only, the time series spectral feature is used to extract the resident land information. The extraction accuracy is increased from 89.85% to 93.38%. (3) the extraction accuracy of resident land information based on temporal spectral features can be improved by using full convolution neural network, and the extraction precision is increased from 93.38% to 95.15%. In addition, the innovations of this thesis are as follows: (1) the relationship between temporal spectral features and solar height angle is introduced into the decision tree model, and compared with the resident extraction method which only makes use of spectral features, (2) combining the sequential spectral features with the full convolution neural network method in depth learning, the classification extraction accuracy is improved even more than other extraction methods which do not take into account the sequential spectral features or other extraction methods that do not use in-depth learning. (2) the sequential spectral features are combined with the full convolution neural network method in depth learning. Based on the temporal spectrum of GF-4 satellite remote sensing image, this paper studies the method of identification and extraction of land and land, and provides dynamic updating data for disaster reduction, disaster prevention, urbanization, urban fine management and land and resource management, and so on. It also provides technical and methodological support and demonstration guidance for the application of home-made high-grade series satellite data remote sensing products.
【学位授予单位】:中国科学院大学(中国科学院遥感与数字地球研究所)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P237

【相似文献】

相关期刊论文 前10条

1 ;《中国污染水体光谱特征》一书出版[J];遥感信息;2001年03期

2 祝昌汉,朱福康,刘玉洁;地表光谱特征[J];气象;1992年03期

3 包安明,吴中莹;可见~近红外波段矿物和岩石光谱特征——以新疆北疆部分地区岩石为例[J];干旱区地理;1993年03期

4 袁春琼,胡列群;北疆一些水域光谱特征浅析[J];新疆气象;1997年03期

5 杨柏林;岩矿光谱特征在遥感地质找矿中的作用[J];地质地球化学;1989年05期

6 董秉宇;张建洪;;钻石的辐射着色处理、色心及光谱特征(一)[J];国外非金属矿与宝石;1990年04期

7 高来之,杨柏林;应用于油气资源遥感的近红外石油物质光谱特征研究[J];国土资源遥感;1991年04期

8 徐金鸿;;粤西不同母岩型红土野外光谱特征[J];测绘科学;2009年S2期

9 谢慧瑗,吕斯骅,金丽芳;几种岩石的中红外反射光谱特征[J];科学通报;1983年20期

10 朱亚平;刘健文;白洁;;云的光谱和纹理特征统计分析[J];遥感技术与应用;2006年01期

相关会议论文 前8条

1 张登荣;董传万;阎强;邓超;;浙东火山岩区岩墙可见光-近红外遥感光谱特征[A];第十五届全国遥感技术学术交流会论文摘要集[C];2005年

2 徐金鸿;;粤西不同母岩型红土野外光谱特征[A];《测绘通报》测绘科学前沿技术论坛摘要集[C];2008年

3 吴德文;吴健生;周正武;张云峰;;青海芒崖金多金属成矿区岩石光谱特征及应用[A];第十三届全国遥感技术学术交流会论文摘要集[C];2001年

4 高占国;张利权;;盐沼植被光谱特征的间接排序识别分析[A];第十五届全国遥感技术学术交流会论文摘要集[C];2005年

5 王晓梅;张玉钧;刘文清;夏慧;;基于光谱特征的植被遥感探测及应用研究[A];第十五届全国遥感技术学术交流会论文摘要集[C];2005年

6 林颖;徐卫明;袁立银;王建宇;;热红外高光谱非均匀性校正及光谱特征提取[A];第八届成像光谱技术与应用研讨会暨交叉学科论坛文集[C];2010年

7 邓书斌;陈秋锦;;植被光谱特征与植被指数综述[A];第十七届中国遥感大会摘要集[C];2010年

8 周宁;尹球;张凤丽;朱迅;;服装面料光谱特征初探[A];成像光谱技术与应用研讨会论文集[C];2002年

相关重要报纸文章 前1条

1 本报记者 沈俊霖;19个“电子眼”监测胶州湾[N];青岛日报;2011年

相关博士学位论文 前3条

1 刘丙新;基于高光谱特征的水上油膜提取与分析研究[D];大连海事大学;2013年

2 高占国;长江口盐沼植被的光谱特征研究[D];华东师范大学;2006年

3 周广柱;铜矿区植物光谱特征与信息提取[D];山东科技大学;2007年

相关硕士学位论文 前10条

1 曲畅;基于GF-4卫星影像时序光谱特征的居民地信息提取研究[D];中国科学院大学(中国科学院遥感与数字地球研究所);2017年

2 刘效栋;黄土台塬区土壤有机质高光谱特征及反演研究[D];西北农林科技大学;2015年

3 张宣宣;玉米铁毒胁迫的光谱特征与叶绿素含量反演实验研究[D];东北大学;2014年

4 张健;锡林郭勒典型草原植被光谱特征研究[D];内蒙古大学;2016年

5 刘璇;基于高光谱遥感图像的植被光谱特征分析及含水量反演[D];哈尔滨工业大学;2016年

6 王祥峰;基于光谱特征以及养分指示因子的土壤养分遥感监测研究[D];辽宁工程技术大学;2015年

7 赵思颖;稻田镉污染高光谱响应及其关系研究[D];江西师范大学;2016年

8 孙勃岩;油菜的高光谱特征及其生理参数估算模型研究[D];西北农林科技大学;2017年

9 段瑞鲁;科尔沁沙地典型沙丘植被光谱特征及其覆盖变化分析[D];内蒙古农业大学;2013年

10 张荟平;基于光谱特征不确定性的遥感影像分类研究[D];华中科技大学;2013年



本文编号:2446454

资料下载
论文发表

本文链接:https://www.wllwen.com/shekelunwen/ydyl/2446454.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c9990***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com