蕨类植物铝富集特征及影响因素研究
本文关键词: 铝 土壤酸化 里白 狗脊 天童 出处:《华东师范大学》2017年硕士论文 论文类型:学位论文
【摘要】:酸沉降引起的土壤酸化对生态环境和生物群落会带来一系列的影响,导致土壤中铝离子的活化并大量溶出,危害森林生态系统的健康。本文以浙江省宁波市天童国家森林公园为例,采集了天童森林公园不同海拔高度不同剖面的土壤样品以及狗脊、里白植株样品,探究了天童森林公园土壤酸化特征、蕨类植物狗脊和里白的铝、硅和铁富集特征,分析讨论了天童森林公园土壤发育程度及狗脊和里白的铝富集特征。主要研究结果如下:(1)土壤酸化特征:研究区土壤酸化明显,pH值从上剖面向土层深度增加,水解性总酸度和交换性酸均呈现由上剖面到下剖面降低的趋向;土壤粘土矿物由伊利石,高岭石和绿泥石构成,伊利石占绝对优势及上下剖面伊利石化学指数0.4;土壤不同剖面铝铁硅系数小于硅铝系数和铝铁系数;土壤游离度低于活化度及铁水合系数1.5;依据土壤酸化特征相关指标的测定结果,得出研究区土壤风化发育程度较低,处于脱硅向富铝化发展的初级阶段。(2)土壤铝溶出特征:研究区0-20 cm剖面土壤活性铝的含量先后分布规律是酸溶铝氧化物、腐殖酸螯合态铝、有机结合态铝、交换态铝、无机吸附态铝、水溶态铝;20-50cm土层的分布规律是腐殖酸螯合态铝、酸溶铝氧化物、交换态铝、有机结合态铝、无机吸附态铝、水溶态铝。土壤剖面0-20cm有效态活性铝占可提取活性铝的12.79%~20.46%,20-50 cm 土层有效态活性铝占可提取活性铝的9.39%~13.46%;通过与不同土壤类型植茶区进行横、纵向比较分析,得出该地有效态活性铝含量及其占可提取活性铝比例与之相当或较高。(3)蕨类植物铝富集特征:狗脊的根部铝含量最高且根部富集系数较高,植株的转移系数偏低(1),得出狗脊的铝累积特点是只有根中累积一定量的铝,但是植株地上部不累积;里白叶片中铝含量平均值为7.444 g/kg,地上部富集系数较高,转移系数为3.350(1),得出里白的铝累积特点是不仅根部能吸收高浓度的铝,植株地上部也能吸收高浓度的铝,属于铝累积植物。(4)蕨类植物铁、硅富集特征:蕨类植物狗脊和里白根部铁含量最高,地上部硅含量高于根部。狗脊的根部铁、硅含量与铝含量之间存在显著正相关(p0.05),表明狗脊植株对铝的吸收加强了对铁的吸收,且不影响植株吸收营养元素硅,根部具有富铁和富硅机制。里白根部铝含量与铁、硅含量之间达到极显著水平(p0.01),表明里白根部对铝吸收的同时不排斥对营养元素铁、硅的吸收,根部具有富铁机制,同时硅的吸收对铝在植株体内的迁移转化影响不大。
[Abstract]:The acidification of soil caused by acid deposition has a series of effects on the ecological environment and biota, which leads to the activation and dissolution of aluminum ions in soil. Taking Tiantong National Forest Park of Ningbo City, Zhejiang Province as an example, soil samples from different altitude profiles and samples of dog ridges and Lilai plants were collected from Tiantong Forest Park, Zhejiang Province. The characteristics of soil acidification in Tiantong Forest Park, the characteristics of aluminum, silicon and iron enrichment in the ferns' dog ridges and libai were investigated. The characteristics of soil acidification in Tiantong Forest Park were analyzed and discussed. The main results were as follows: the pH value of soil acidification increased from the upper profile to the depth of soil layer in the study area. The total hydrolytic acidity and exchangeable acid tended to decrease from the upper profile to the lower profile, and the clay minerals in the soil were composed of Illite, kaolinite and chlorite. Illite occupies the absolute dominance and the Illite chemical index is 0.4 in the upper and lower sections, and the Al-Fe-Si coefficient of soil in different profiles is lower than that of Si-Al and Al-Fe; The degree of soil dissociation is lower than that of activation and the coefficient of iron hydration is 1.5. According to the measurement results of soil acidification characteristics, it is concluded that the degree of soil weathering and development in the study area is lower than that in the study area. In the primary stage of desilication to aluminization, the characteristics of aluminum dissolution in soil: the distribution of active aluminum in soil in 0-20 cm profile is acid soluble aluminum oxide, humic acid chelate aluminum, organic bound aluminum and exchangeable aluminum. The distribution of inorganic adsorbed aluminum and water-soluble aluminum in the soil layer of 20-50 cm is that of humic acid chelate aluminum, acid-soluble aluminum oxide, exchangeable aluminum, organic bound aluminum, inorganic adsorbed aluminum. Water soluble aluminum. Available active aluminum in 0-20cm soil profile accounted for 12.79% of extractable active aluminum in 20.46 cm soil layer and 9.39% 13.46% of extractable active aluminum in 20-50 cm soil layer. The available active aluminum content and its proportion in extractable active aluminum were obtained. The characteristics of aluminum enrichment in pteridophytes were as follows: the highest Al content in the root and the higher enrichment coefficient in the root of the canine ridge. The transfer coefficient of the plant was lower than that of the control. It was found that only a certain amount of aluminum was accumulated in the root of the dog ridge, but not in the shoot, and the average aluminum content in the leaves of Libai was 7.444 g / kg, and the enrichment coefficient of the aboveground part was higher. The transfer coefficient is 3.350 ~ 1 ~ (-1). The characteristic of aluminum accumulation in Libai is that not only the roots can absorb high concentration of aluminum, but also the aboveground part of plants can absorb high concentration of aluminum, which belongs to the aluminum accumulative plant. The characteristics of silicon enrichment: the iron content in the roots of pteridophyte dog ridges and libbeas was the highest, and the content of silicon in the aboveground part was higher than that in the roots. There was a significant positive correlation between Si content and Al content, which indicated that the absorption of Al by Doggesia plants enhanced the absorption of Fe, and had no effect on the absorption of nutrient element Si by the plant, and the roots had the mechanism of rich in Fe and rich in Si, and the content of Al in the root of Libai was related to iron, and the content of Al in the root of Libai increased the absorption of Fe. The content of Si reached a significant level (p 0.01), which indicated that the root of Libai did not exclude the absorption of iron and silicon at the same time, the absorption of Fe and Si in the root had the mechanism of iron enrichment, and the absorption of silicon had little effect on the migration and transformation of aluminum in the plant.
【学位授予单位】:华东师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X173
【参考文献】
相关期刊论文 前10条
1 秦樊鑫;魏朝富;黄先飞;姜鑫;刘文政;吴迪;;黔西北茶园土壤活性铝的形态分布及影响因素[J];环境科学研究;2015年06期
2 吴浩;卢志军;黄汉东;江明喜;;三种植物对土壤磷吸收和富集能力的比较[J];植物生态学报;2015年01期
3 刘少坤;周卫军;苗霄霖;杨威;杨君;郭子川;;茶树根际土壤铝形态演变规律及其影响因素[J];土壤;2014年05期
4 袁大刚;陈旋;孙健;杨大东;王昌全;蒲光兰;;川西3种茶园土壤的酸度和酸碱缓冲能力及石灰需要量比较[J];湖南农业大学学报(自然科学版);2014年04期
5 刘晓静;郑宝山;胡军;王滨滨;;贵州茶园土壤中氟、铝形态及其关系的实验研究[J];地球与环境;2014年04期
6 李晓艳;孙立;吴良欢;;不同吸硅型植物各器官硅素及氮、磷、钾素分布特征[J];土壤通报;2014年01期
7 季海宝;孙晓;桂仁意;庄舜尧;;集约经营对雷竹林土壤与植株铝含量的影响[J];林业科学;2014年01期
8 苏有健;廖万有;王烨军;张永利;吴新荣;胡善国;孙力;;皖南茶园土壤活性铝形态分布与土壤pH和植茶年限的关系[J];农业环境科学学报;2013年04期
9 解淑艳;王瑞斌;郑皓皓;;2005—2011年全国酸雨状况分析[J];环境监控与预警;2012年05期
10 丁慧明;姚芳芳;陈静静;王希华;杨颂宇;;浙江宁波天童地区酸性降水化学特征研究[J];环境科学学报;2012年09期
相关博士学位论文 前6条
1 姚芳芳;酸沉降类型和喷施方式对木荷和湿地松幼苗生理生态及生长的影响[D];华东师范大学;2016年
2 沈月;辽宁耕地棕壤酸化特征及其机理研究[D];沈阳农业大学;2013年
3 段小华;影响茶树铝循环和茶叶品质因素的研究[D];南昌大学;2012年
4 沈会涛;天童常绿阔叶林不同演替阶段生态水文特征研究[D];华东师范大学;2011年
5 王静;天童常绿阔叶林大气降雨再分配及降雨分量的化学特征[D];华东师范大学;2008年
6 易兰;浙江天童受损常绿阔叶林的次生演替对土壤动物群落的影响[D];华东师范大学;2005年
相关硕士学位论文 前10条
1 赵凯丽;不同母质红壤的酸化特征及趋势[D];中国农业科学院;2016年
2 张志浩;天童常绿阔叶林不同演替阶段植物的水力结构特征[D];华东师范大学;2014年
3 常跃畅;福建省代表性土壤的氧化铁组成与磁化率及其发生学意义[D];浙江大学;2014年
4 司勇;物种和气候对植物硅、铝铁和植硅体组成的影响[D];浙江农林大学;2013年
5 田锴;古田山亚热带常绿阔叶林草本植物群落结构和多样性格局研究[D];浙江师范大学;2013年
6 程伟丽;茶树铁的分布特征及稻改茶对土壤铁碳耦合关系的影响[D];四川农业大学;2012年
7 谭海燕;土地利用方式改变对漂洗土壤铁元素转化迁移的影响[D];四川农业大学;2011年
8 黄媛;丘陵红壤区不同种植年限茶园土壤铝形态与茶树体铝分布格局[D];南昌大学;2011年
9 张倩;江苏省典型茶园土壤酸化动态及调控措施研究[D];南京农业大学;2011年
10 张明;酸沉降对泰山土壤酸化及植物生态生理特性影响研究[D];山东大学;2010年
,本文编号:1550770
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/1550770.html