山东省农业碳排放效率评价及影响因素研究
本文选题:农业碳排放 切入点:碳排放效率 出处:《山东理工大学》2017年硕士论文 论文类型:学位论文
【摘要】:随着我国经济的高速增长,伴随而来的是能源资源的大量消耗,环境污染及资源枯竭等问题也日益严峻,导致温室气体的大量排放,相应的,二氧化碳减排问题所带来的国际压力也愈发明显。据国际能源署(IEA)初步数据显示,2016年全球经济增长3.1%,二氧化碳排放量为321亿吨,实现连续三年持平,而中国在2015年的碳排放量超过100亿吨,约占全球的30%,成为全球碳排放量最大的国家。据联合国粮农组织统计,农业生产所排放的二氧化碳等温室气体约占到全世界人为温室气体排放总量的1/3,农业生产所排放的温室气体已成为世界温室气体排放的第二大来源。中国作为农业大国,形式必然异常严峻。在此背景之下本文从区域层面的角度出发对农业碳排放进行探索研究,以期为区域碳排放提供参考。本文选择以山东省为例,通过分析农业系统碳排放源、估算农业碳排放量、评价农业碳排放效率及探讨影响农业碳排放效率的因素,最终发现了山东省在发展低碳农业过程中存在的问题。基于这些问题,有针对性的提出山东省现阶段开展低碳农业的对策与建议,这对现阶段发展山东省低碳农业具有重要意义。本文主要分为七个部分:第一部分为绪论,主要介绍本文的研究背景及研究意义,对与碳排放相关的国内外研究进行回顾,并对本文所使用的研究方法与研究内容做出了基本介绍。第二部分是对农业碳减排理论方面的介绍,主要介绍了评测碳排放效率的理论,为下文对山东省农业碳排放的实证分析做出简要铺垫。第三部分首先分析了山东省农业的发展现状,进而将山东省农业系统的碳排放源分为十类,对山东省2000—2015年的农业进行碳排放测算。第四部分是本文的重点之一,首先基于DEA方法构建出评价农业碳排放效率的指标体系,该指标体系一共包括5个投入指标、2个产出指标和1个非期望产出指标,进而对山东省农业进行碳排放效率评价。在具体的评价过程中,首先利用DEA中的超效率SBM模型对2015年山东省农业碳排放进行效率评价,并和全国31个省、市、自治区进行横向对比;然后,利用Malmquist Luenberger指数对2004-2015年期间的山东省农业碳排放综合效率进行纵向分析,并对山东省的农业碳排放效率指数进行了分解,分析了农业技术进步和农业技术效率变动在发展山东省低碳农业中所起到的作用。第五部分为分析了能够影响山东省农业碳排放效率的六项因素,并运用多元层次分析对其进行影响因素分析。第六部分为总结了山东省农业碳排放现状、农业碳排放效率评价及影响因素分析之后,最后针对性地提出关于减少山东省农业碳排放的对策建议。最后一部分为结论与研究展望,首先对本文所做的研究做出总结,其次提出本文研究的不足点,最后对下一步的研究方向做出简要规划。
[Abstract]:With the rapid economic growth of our country, along with the large consumption of energy and resources, environmental pollution and resource depletion are increasingly serious, resulting in a large number of greenhouse gas emissions, corresponding, International pressure on carbon dioxide emissions is also growing. According to preliminary data from the International Energy Agency (IEA), in 2016 the global economy grew 3.1 percent, with 32.1 billion tons of carbon dioxide emissions, the third straight year of flat emissions. In 2015, China's carbon emissions exceeded 10 billion tons, accounting for about 30 percent of the world's carbon emissions, making it the world's largest carbon emitter. According to the United Nations Food and Agriculture Organization, The carbon dioxide and other greenhouse gases emitted by agricultural production account for about one-third of the total anthropogenic greenhouse gas emissions in the world, and the greenhouse gas emissions from agricultural production have become the second largest source of greenhouse gas emissions in the world. China is a big agricultural country. Under this background, this paper explores and studies agricultural carbon emissions from a regional perspective, in order to provide a reference for regional carbon emissions. This paper chooses Shandong Province as an example, through the analysis of agricultural system carbon emission sources, Estimation of agricultural carbon emissions, evaluation of agricultural carbon emission efficiency and discussion of factors affecting agricultural carbon emission efficiency, finally found the problems existing in the development of low-carbon agriculture in Shandong Province. It is of great significance to develop low-carbon agriculture in Shandong Province at the present stage. This paper is divided into seven parts: the first part is the introduction. This paper mainly introduces the research background and significance of this paper, and reviews the domestic and foreign research related to carbon emissions. In the second part, the theory of carbon emission reduction in agriculture is introduced, and the theory of carbon emission efficiency evaluation is mainly introduced. The third part first analyzes the current situation of agriculture in Shandong Province, and then divides the carbon emission sources of Shandong agricultural system into ten categories. The carbon emission measurement of agriculture in Shandong Province from 2000 to 2015 is one of the emphases of this paper. Firstly, based on the DEA method, an index system to evaluate the efficiency of agricultural carbon emissions is constructed. The index system consists of five input indicators, two output indicators and one non-expected output index, and then evaluates the carbon emission efficiency of agriculture in Shandong Province. In 2015, the efficiency of agricultural carbon emissions in Shandong Province was evaluated by using the super-efficiency SBM model in DEA, and compared with 31 provinces, municipalities and autonomous regions in China. The comprehensive efficiency of agricultural carbon emissions in Shandong Province from 2004 to 2015 was analyzed longitudinally by using Malmquist Luenberger index, and the agricultural carbon emission efficiency index of Shandong Province was decomposed. This paper analyzes the role of agricultural technology progress and agricultural technology efficiency change in the development of low-carbon agriculture in Shandong Province. 5th is the analysis of six factors that can affect the efficiency of agricultural carbon emissions in Shandong Province. After summarizing the current situation of agricultural carbon emissions in Shandong Province, the evaluation of agricultural carbon emission efficiency and the analysis of the influencing factors, the paper analyzes the factors affecting the carbon emissions in Shandong Province. The last part is the conclusion and research prospect. Firstly, the paper summarizes the research done in this paper, and then puts forward the deficiencies of this study. Finally, a brief plan for the next research direction is made.
【学位授予单位】:山东理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X322;F327;F224
【参考文献】
相关期刊论文 前10条
1 戴小文;何艳秋;钟秋波;;中国农业能源消耗碳排放变化驱动因素及其贡献研究——基于Kaya恒等扩展与LMDI指数分解方法[J];中国生态农业学报;2015年11期
2 于伟咏;漆雁斌;李阳明;;碳排放约束下中国农业能源效率及其全要素生产率研究[J];农村经济;2015年08期
3 刘亦文;胡宗义;;中国碳排放效率区域差异性研究——基于三阶段DEA模型和超效率DEA模型的分析[J];山西财经大学学报;2015年02期
4 张小平;王龙飞;;甘肃省农业碳排放变化及影响因素分析[J];干旱区地理;2014年05期
5 刘立平;;河南省农业碳排放时空特征及影响因素研究[J];水土保持研究;2014年04期
6 吴贤荣;张俊飚;田云;李鹏;;中国省域农业碳排放:测算、效率变动及影响因素研究——基于DEA-Malmquist指数分解方法与Tobit模型运用[J];资源科学;2014年01期
7 杨钧;;农业技术进步对农业碳排放的影响——中国省级数据的检验[J];软科学;2013年10期
8 田云;张俊飚;;农业碳排放国内外研究进展[J];中国农业大学学报;2013年03期
9 付文文;;基于地理因素的山东省行政地名研究[J];学理论;2012年35期
10 郭亚军;;基于三阶段DEA模型的工业生产效率研究[J];科研管理;2012年11期
相关会议论文 前1条
1 秦军;;低碳农业发展的金融支持研究[A];2014中国环境科学学会学术年会(第三章)[C];2014年
相关博士学位论文 前2条
1 徐军委;基于LMDI的我国二氧化碳排放影响因素研究[D];中国矿业大学(北京);2013年
2 温和;黑龙江省村域农业生态系统碳平衡及低碳农业对策研究[D];东北农业大学;2011年
,本文编号:1606723
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/1606723.html