快照式成像光谱仪检测印染废水的研究
本文选题:成像光谱仪 + 光谱图像 ; 参考:《哈尔滨工业大学》2017年硕士论文
【摘要】:我国印染纺织业带动经济发展的同时,每年会排放大量对水环境有害的印染废水。印染废水成分复杂,对印染废水的快速检测是我国水质检测技术的一个挑战。快照式成像光谱仪可以在一个快门的积分时间内获取目标的三维光谱数据集,从而可以根据光谱信息地对目标进行检测。本课题旨在使用自主研发的快照式成像光谱仪,建立一种准确、快捷、简易、可现场检测印染废水的检测方法。本文基于分光光度法原理,首先验证了仪器优良的图像获取性能,快速的光谱获取能力,以及532 nm处有优于11 nm的光谱分辨力,并将仪器用于液体样品的检测。选用罗丹明B染料废水为研究对象,优化检测条件。分析三种检测光源的优缺点,确定不同应用场景下的光源;设计用于检测的样品池,提高检测的精度和稳定性;分析背景光干扰对检测结果的影响,通过单因素方差分析,证明上方背景光可提高成像质量且对检测无影响。用快照式成像光谱仪检测模拟印染废水。对于单一组分模拟废水,以白光LED阵列光源为检测光源,实验建立了橙黄G和罗丹明B 0-50 mg/L范围内的标准曲线,确定了检测橙黄G和罗丹明B的检出限分别为0.837 mg/L和0.905mg/L,对罗丹明B和橙黄G废水的回收率分别为93%-113%和102%-104%,相对标准偏差(RSD)分别为5.2%和1.3%;对于混合组分模拟废水,直接进行检测的误差较大,通过多元线性回归结合分光光度法建立了混合组分印染废水的检测模型,模型的拟合程度很高,利用建立的检测模型对样品进行检测可显著降低测量的相对误差。用快照式成像光谱仪监测印染废水的脱色过程。设计了活性炭吸附和Fenton试剂氧化罗丹明B废水的反应装置,建立了罗丹明B废水在0.5-10 mg/L范围的标准曲线,判定系数R2大于0.99。用活性炭吸附罗丹明B废水,仪器监测到吸附过程中废水的光谱发生变化,且变化趋势与废水脱色现象一致;探究活性炭投加量对吸附效果的影响,绘制不同活性炭投加量下的的吸附曲线,得出随着活性炭投加量的增加,活性炭的吸附能力与吸附的速度均有所加强。在Fenton试剂氧化实验中,采用连续采样模式,监测450 s内废水的脱色过程,并探究不同过氧化氢投加量对脱色效果的影响,得出在5 m L/L的最佳过氧化氢投加量下,废水脱色率可达90.68%。
[Abstract]:With the development of textile industry in China, a large amount of printing and dyeing wastewater which is harmful to water environment will be discharged every year. Because the composition of printing and dyeing wastewater is complex, rapid detection of printing and dyeing wastewater is a challenge of water quality detection technology in China. The snapshot imaging spectrometer can obtain the three-dimensional spectral data set of the target in the integral time of a shutter, so that the target can be detected according to the spectral information. The purpose of this paper is to establish an accurate, fast, simple and field detection method for printing and dyeing wastewater by using the snapshot imaging spectrometer developed by ourselves. Based on the principle of spectrophotometry, this paper first verifies the excellent image acquisition performance of the instrument, the fast spectral acquisition ability, and the spectral resolution at 532 nm which is better than 11 nm. The instrument is applied to the detection of liquid samples. Rhodamine B dye wastewater was selected as the research object and the detection conditions were optimized. The advantages and disadvantages of the three detection light sources are analyzed to determine the light sources in different application scenarios; the sample pool for detection is designed to improve the accuracy and stability of the detection; the influence of background light interference on the detection results is analyzed, and the single factor variance analysis is used to analyze the effect of background light interference on the detection results. It is proved that the above background light can improve the imaging quality and has no effect on the detection. The simulated printing and dyeing wastewater was detected by snapshot imaging spectrometer. The standard curves of orange G and Rhodamine B 0-50 mg / L were established by using white LED array light source as the detection light source for a single component simulated wastewater. The detection limits of orange G and Rhodamine B were 0.837 mg / L and 0.905 mg / L, respectively. The recoveries of Rhodamine B and orange G wastewater were 93-113% and 102-104%, respectively. The relative standard deviation (RSD) was 5.2% and 1.3%, respectively. The error of direct detection is large. The detection model of mixed component printing and dyeing wastewater is established by multivariate linear regression and spectrophotometry, and the fitting degree of the model is very high. The relative error of measurement can be significantly reduced by using the established detection model to detect the sample. The decolorization process of printing and dyeing wastewater was monitored by snapshot imaging spectrometer. A reactor for adsorption of activated carbon and oxidation of Rhodamine B wastewater with Fenton reagent was designed. The standard curve of rhodamine B wastewater in the range of 0.5-10 mg / L was established. The determination coefficient R2 was greater than 0.99. The absorption of Rhodamine B wastewater by activated carbon has been monitored by the instrument, and the change trend is consistent with the decolorization of wastewater, and the effect of the dosage of activated carbon on the adsorption effect is explored. The adsorption curves under different dosage of activated carbon were plotted. It was concluded that the adsorption capacity and adsorption rate of activated carbon increased with the increase of the amount of activated carbon. In Fenton reagent oxidation experiment, continuous sampling mode was used to monitor the decolorization process of wastewater in 450 s, and the effect of different hydrogen peroxide dosage on decolorization effect was investigated. The optimum hydrogen peroxide dosage of 5 mL / L was obtained. The decolorization rate of wastewater can reach 90.68%.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X791
【参考文献】
相关期刊论文 前10条
1 朱应良;万金泉;马邕文;王艳;;电化学协同过硫酸盐法氧化处理橙黄G染料废水[J];水处理技术;2016年08期
2 张聪;;工业废水处理现状与解决对策思考[J];资源节约与环保;2016年04期
3 李志刚;;印染废水中酸性橙染料的固相萃取-HPLC法测定[J];印染;2016年04期
4 何秀文;陈添兵;姚明印;周华茂;胡慧琴;王彩虹;刘木华;;激光诱导击穿光谱技术/多元二次非线性回归分析土壤中的铬元素[J];分析化学;2016年01期
5 府秋琴;;印染废水在线监测技术发展及展望[J];绿色科技;2015年12期
6 程垒;白晓龙;;活性炭吸附对水中亚甲基蓝染料脱色的影响[J];中国资源综合利用;2015年11期
7 杨庆华;;Compact static infrared broadband snapshot imaging spectrometer[J];Chinese Optics Letters;2014年03期
8 孔明;汪晨;;可见光谱法测定单一、混合组分中的染料浓度[J];光谱实验室;2013年02期
9 任南琪;周显娇;郭婉茜;杨珊珊;;染料废水处理技术研究进展[J];化工学报;2013年01期
10 魏康林;温志渝;武新;张中卫;曾甜玲;;基于紫外-可见光谱分析的水质监测技术研究进展[J];光谱学与光谱分析;2011年04期
相关博士学位论文 前4条
1 方煜;成像光谱仪光学系统设计与像质评价研究[D];中国科学院研究生院(西安光学精密机械研究所);2013年
2 范迪;印染废水处理机理与技术研究[D];中国海洋大学;2008年
3 金锡哲;干涉成像光谱技术研究[D];中国科学院长春光学精密机械与物理研究所;2000年
4 张淳民;干涉成像光谱技术研究[D];中国科学院西安光学精密机械研究所;2001年
相关硕士学位论文 前10条
1 冀雅婉;超声辅助泡沫铜/H_2O_2体系处理印染废水效能研究[D];哈尔滨工业大学;2016年
2 琚赛琴;水产品及环境水中三苯甲烷类染料检测新方法研究[D];南华大学;2015年
3 张宇;基于微透镜阵列的快照式成像光谱技术研究[D];哈尔滨工业大学;2014年
4 张晓孟;辽河流域印染业有毒有害物污染源调查及污染特征研究[D];西安建筑科技大学;2014年
5 卢福容;基于微型光谱仪的COD快速测定[D];重庆大学;2012年
6 李绪婷;基于微萃取技术的罗丹明B分光光度检测新方法研究[D];南华大学;2012年
7 朱江;利用Fenton试剂处理橙黄G染料废水[D];西北农林科技大学;2012年
8 梁刚;大型藻类遥感监测方法研究[D];大连海事大学;2011年
9 房文杰;染液中染料组分的浓度分析[D];东华大学;2011年
10 金艳红;印染织品和废水中直接染料的色谱与荧光分析研究[D];南昌大学;2010年
,本文编号:1995614
本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/1995614.html