当前位置:主页 > 社科论文 > 生态环境论文 >

湖泊富营养化评价方法研究及其系统设计

发布时间:2018-07-31 18:15
【摘要】:经济发展和工业进步带动了社会发展,促使人类对淡水污染的防治问题越来越重视。采用合理的水质评价方法以及建立稳定可靠的水质评价体系是进行水资源污染监测和治理的重要手段。这就需要针对大面积的湖泊水域,进行水质等级监测方法的研究以及量化的分析软件系统的设计。本课题以此为研究背景,将水污染这个复杂的机理量化到一些与富营养化相关性比较大的水质参数中,通过经验关系选择总氮(TN)、总磷(TP)、叶绿素a(Chl_a)、悬浮物(ss)、高锰酸(CODmn)五个参数作为研究变量,依据国内地表水的评价标准和本课题的研究参数,制定本课题中湖泊富营养评价的参照标准,结合主流的水质评价算法:综合营养状态指数法(TLI)、单因子评价法、模糊综合评价法、BP神经网络算法,分别进行水体质量评估。水质评价体系建立的关键在于水质评价优化模型的构建。从择优的角度出发,对各算法评价结果与实际情况进行对比分析,确立BP算法作为水质评价优化算法建模的原始模型。利用遗传算法全局寻优的能力,弥补BP算法初始权值和阈值不确定带来的精度差异,构建优化的GA-BP模型对水体质量进行评价。与传统的BP神经网络算法仿真对比,显示混合型GA-BP算法在计算效率和评价精度上存在明显的优势,优化后的GA-BP模型评价精度从原来的0.1达到了0.05,且评价速度加快了4倍。为了构建完整的评价体系,本课题设计了水质评价系统,本系统功能包括:系统登陆、带有海量数据的多格式反演影像的读取、数据预处理、数据保存、数据运算、评价算法的稳定嵌入以及评价结果的可视化显示。选取IDL开发平台和IDL编程语言进行系统开发。设计系统的登陆模块与评价模块的流程与结构,详细介绍了水质评价系统的UI界面设计思路以及各个菜单栏布局,同时对系统进行了功能性和非功能性的软件测试。系统能够准确的对以龙泉湖为样本,针对课题中5种评价参数的反演影像浓度获取,进而做水质等级可视化划分,建立量化的水质评价软件系统,有效的对大面积的水域污染进行监测。其研究成果为成都市科技局的水质监测研发项目提供了可靠的保障。
[Abstract]:Economic development and industrial progress have driven social development, prompting human beings to pay more and more attention to the prevention and treatment of freshwater pollution. It is an important means to monitor and control water pollution by adopting reasonable water quality evaluation method and establishing a stable and reliable water quality evaluation system. Therefore, it is necessary to study the method of water quality grade monitoring and the design of quantitative analysis software system for the large area of lake waters. Based on this research background, this paper quantifies the complex mechanism of water pollution into some water quality parameters which have great correlation with eutrophication. Five parameters of total nitrogen (TN), total phosphorus (TP), chlorophyll a (Chl_a) and suspended substance (ss), high manganese acid (CODmn) were selected as the research variables through empirical relationship. The evaluation criteria of domestic surface water and the research parameters of this subject were used. The reference standard of lake eutrophication evaluation was established in this paper. Combined with the mainstream water quality evaluation algorithms: (TLI), single factor evaluation method and fuzzy comprehensive evaluation method BP neural network algorithm were used to evaluate water quality respectively. The key to the establishment of water quality evaluation system lies in the construction of water quality evaluation optimization model. From the point of view of optimal selection, the evaluation results of each algorithm are compared with the actual situation, and the BP algorithm is established as the original model of water quality evaluation optimization algorithm. The global optimization ability of genetic algorithm is used to make up for the accuracy difference caused by the uncertainty of initial weight and threshold of BP algorithm, and an optimized GA-BP model is constructed to evaluate the water quality. Compared with the traditional BP neural network algorithm, it shows that the hybrid GA-BP algorithm has obvious advantages in computational efficiency and evaluation accuracy. The evaluation accuracy of the optimized GA-BP model reaches 0.05 from the original 0.1, and the evaluation speed is 4 times faster. In order to construct a complete evaluation system, a water quality evaluation system is designed. The functions of the system include: system landing, reading of multi-format inversion image with massive data, data preprocessing, data saving, data operation, etc. Stable embedding of evaluation algorithm and visualization of evaluation results. IDL development platform and IDL programming language are selected to develop the system. The process and structure of the landing module and evaluation module of the system are designed. The UI interface design idea of the water quality assessment system and the layout of each menu bar are introduced in detail. At the same time, the functional and non-functional software tests are carried out on the system. The system can accurately take Longquan Lake as a sample to obtain the inversion image concentration of five evaluation parameters in the subject, and then make visual classification of water quality grade, and establish a quantitative water quality evaluation software system. Effective monitoring of large areas of water pollution. The research results provide a reliable guarantee for the R & D project of water quality monitoring in Chengdu Science and Technology Bureau.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X824

【参考文献】

相关期刊论文 前10条

1 俞焰;杨正健;刘德富;张佳磊;方铭;;模糊数学在抽水蓄能电站富营养评价的应用[J];环境工程;2016年S1期

2 胡序朋;邵君波;唐静亮;王益鸣;柴小平;庄彤晖;李俊龙;;近岸海域富营养化评价方法的研究进展和比较[J];中国环境监测;2016年01期

3 马丽;何前宏;;安昌河绵阳段水体中TOC、COD_(Cr)、BOD_5、DO的相关关系研究[J];绵阳师范学院学报;2015年11期

4 黄磊;;基于Matlab的概率与数理统计分析实践[J];湘南学院学报;2015年05期

5 梁琳;周艳军;孔祥羽;程建超;;黑龙江太平沟断面水质评价方法选择[J];东北水利水电;2015年07期

6 张亚丽;周扬;程真;姚志鹏;申剑;王潇磊;;不同水质评价方法在丹江口流域水质评价中应用比较[J];中国环境监测;2015年03期

7 武创举;宋双杰;曾桂平;;神经网络算法在ENVI上的集成与优化[J];价值工程;2015年06期

8 曾德彪;王栋;丁昊;王腊春;邹欣庆;;水体富营养化评价的多维正态云法与其他几种方法的对比分析[J];南京大学学报(自然科学);2015年01期

9 尹海洁;高云红;;神经网络分析与相关分析、回归分析的比较——基于大学毕业生的成就性水平及其影响因素的研究[J];江苏社会科学;2014年06期

10 王华静;旦波;赵超;刘梦;朱亚兰;杜鹃;李锦;徐留兴;;四川省龙泉湖表层沉积物与表层水体中各种形态氮含量及其相关关系[J];水土保持通报;2014年05期

相关会议论文 前1条

1 潘忠成;李敏;;HJ636-2012测定总氮时空白值偏高原因分析[A];2015年中国环境科学学会学术年会论文集(第一卷)[C];2015年

相关博士学位论文 前1条

1 王瑞富;HY-1A卫星CCD重要河口监测服务系统[D];中国海洋大学;2006年

相关硕士学位论文 前10条

1 陆芳启;钼酸铵分光光度法检测工业磷酸含量的建立及初步应用[D];广西大学;2014年

2 阮嘉玲;三峡库区泥沙过程变异对浮游植物的影响及营养化评价方法研究[D];武汉轻工大学;2014年

3 李华;基于气候舒适性的川西平原传统城镇空间形态影响研究[D];西南交通大学;2014年

4 左婵;汾河水库富营养化模拟与研究[D];太原理工大学;2014年

5 杨静;改进的模糊综合评价法在水质评价中的应用[D];重庆大学;2014年

6 石岭岭;结合神经网络和遗传算法的脉冲参数寻优与灭藻实验研究[D];重庆大学;2013年

7 闫冬;神经网络技术在股票价格短期预测中的应用研究[D];重庆交通大学;2013年

8 孔艳婷;基于MapGIS遥感图像分析处理研究[D];内蒙古科技大学;2012年

9 郭杨亮;多波段遥感图像在土地利用中的应用研究[D];西安科技大学;2012年

10 王瑞;基于遗传优化BP神经网络的污水处理水质预测研究[D];华南理工大学;2012年



本文编号:2156423

资料下载
论文发表

本文链接:https://www.wllwen.com/shengtaihuanjingbaohulunwen/2156423.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e3d8d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com