地面沉降分析及预测模型研究
发布时间:2017-12-27 21:42
本文关键词:地面沉降分析及预测模型研究 出处:《河北工程大学》2017年硕士论文 论文类型:学位论文
更多相关文章: 地表位移 变形监测 GPS数据处理 预测模型
【摘要】:变形不论是在自然界还是人类生活区域都是广泛存在的一种现象,随着我国新型城市化进程的加快,矿产资源不断开采,为现代化建设提供了有力保障。但同时在矿产资源开采完成后通常会形成规模巨大的采空区,造成局部岩层和地表的移动,采空区失稳将导致地表下沉等严重危害。因此,对矿区沉陷区域进行地表移动监测和预测尤为重要。变形监测是监测地表位移安全性、可靠性的重要手段,是为了监测地表点位移动情况而进行的长时间、重复性测量作业。本文以内蒙古某煤矿沉陷区地表沉降监测与分析为例,通过地面采集的大量沉降观测数据及时绘制各期观测沉降曲线发现采空区地表变形情况,探讨丘陵地带采空区沉降变形规律,研究有效的预测预警模型,重点针对似大地水准面的建立及变形监测的预测模型建立和检验等相关问题进行了研究与探讨。主要内容如下:(1)系统阐述了GPS测量原理、高精度GPS处理方法。(2)研究沉降变形基准网的选择、各期基准建立统一标准。对GPS基线向量网无约束平差、GPS基线向量网约束平差、GPS网与地面网联合平差的理论知识进行研究。(3)建立采空区研究区域的似大地水准面的拟合模型。在寻找最优建模方案时采用多项式拟合、GA-BP、支持向量机方法进行研究。(4)阐述了地面沉降预测模型方法。分别在研究区域内建立了地面变形监测的概率积分模型、BP神经网络、回归分析模型三种预测模型。
[Abstract]:Deformation is a widespread phenomenon in nature or human life area. With the acceleration of new urbanization in China, continuous exploitation of mineral resources has provided a powerful guarantee for modernization. But at the same time, after the completion of mineral resources exploitation, large scale goaf will usually form, causing the movement of local strata and surface. The instability of goaf will cause serious harm to surface subsidence. Therefore, it is particularly important to monitor and predict the surface movement in the subsidence area of the mining area. Deformation monitoring is an important means to monitor the safety and reliability of surface displacement. It is a long and repetitive operation for monitoring the movement of surface points. In this paper, a Inner Mongolia coal mine subsidence area surface subsidence monitoring and analysis as an example, through a large number of ground settlement observation data collection timely rendering the observed settlement curve found in goaf surface deformation, explore the foothills of goaf settlement deformation law, the study of effective forecasting early warning model, has conducted the research and the discussion focuses on the forecast model establishment and quasi geoid deformation monitoring and the establishment of inspection and other related issues. The main contents are as follows: (1) the principle of GPS measurement and the high precision GPS processing method are systematically expounded. (2) to study the selection of datum network for settlement and deformation and to establish a unified standard for the datum of each period. The theoretical knowledge of GPS baseline vector network unconstrained adjustment, GPS baseline vector network constraint adjustment, GPS network and ground network combined adjustment is studied. (3) a fitting model of the quasi geoid in the study area of the goaf is established. The polynomial fitting, GA-BP and support vector machine are used to study the optimal modeling scheme. (4) the prediction model method of ground subsidence is expounded. The probability integral model of the ground deformation monitoring, the BP neural network and the regression analysis model are established in the study area, respectively, and three forecasting models are established.
【学位授予单位】:河北工程大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P642.26
【参考文献】
相关期刊论文 前10条
1 董文文;朱鸿鹄;孙义杰;施斌;;边坡变形监测技术现状及新进展[J];工程地质学报;2016年06期
2 吴勇;裴海涛;;概率积分法预计参数数学模型分析[J];科技展望;2014年21期
3 于思博;;刍议测量工作中GPS的应用及原理[J];黑龙江水利科技;2014年10期
4 周世健;罗亦泳;鲁铁定;;局部均值分解(LMD)方法在多尺度变形分析中的应用分析探讨[J];江西科学;2014年04期
5 李帅;宋振柏;曹俊茹;王廷;;概率积分法在煤矿开采沉陷预计中的应用[J];现代矿业;2013年12期
6 马支训;周玉华;曾凡盛;赵迎春;;CORS网流动站在地表变形监测中的可行性研究[J];煤矿现代化;2013年04期
7 康世英;张宏伟;;GPS网高程约束对二维平差精度的影响分析[J];测绘通报;2012年S1期
8 曹朋;郝蒙蒙;王佳佳;;基于多元线性回归与BP神经网络的矿井瓦斯预测模型应用[J];煤炭技术;2011年11期
9 钟汉青;;GPS准动态测量及精度分析[J];湖南水利水电;2011年05期
10 黑君淼;于楷;梁艳;;基于Matlab的BP神经网络在工广地表移动变形监测及规律中的应用[J];煤矿现代化;2010年03期
,本文编号:1343304
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/1343304.html