正整数表示成混合数之和的表示方法数
发布时间:2018-04-21 13:11
本文选题:混合数 + theta函数 ; 参考:《江苏大学》2017年硕士论文
【摘要】:正整数表示为多个混合数之和的表示方法数是当前组合数学和数论领域的研究热点之一,该课题与多个数学分支有着重要的联系,吸引了包括高斯在内的众多数学研究者的兴趣。本文主要研究了正整数表示为六个变量和八个变量的混合数之和的表示方法数。令N和(r,s;t;n)和N(a1,a2,a3;b1,b2;c1,c2,c3.c4;n)分别为将正整数n表示成含六个未知数和含八个未知数之和的表示方法数。在本文中,对于任意的正整数n和某些特殊的{r,s,t}、{a1,a2,a3;b1,b2;c1,c2,c3,c4}、利用theta函数和Eisenstein级数的(p,k)参数公式,确定了一些N(r,s;t;n),N(a1,a2,a3;b1,b2;c1,c2,c3,c4;n)的精确公式。本文结构如下:在第一章中,主要介绍了研究背景、研究现状以及研究的主要内容。第二章中,主要介绍了 theta函数、Eisenstein级数及它们的(p,k)参数表示,为第三章和第四章中建立新的包含theta函数和Eisenstein级数的恒等式做好准备。在第三章中,利用theta函数的(p,k)参数表示建立了一系列新的theta函数恒等式,研究了将正整数n表示为六个变量的混合数之和的表示方法数,确定了N(2,0;1;n),N(2,0;2;n),N(2,0;4;n),N(1,1;1;n),N(1,1;2;n),N(1,1;4;n),N(0,2;1;n),N(0,2;2;n)和N(0,2;4;n)的精确公式。在第四章中,引入了函数G(q和H(q),利用Eisenstein级数的(p,k)参数表示,建立了多个包含Eisenstein级数的恒等式,研究了将正整数n表示为八个变量的混合数之和的表示方法数,刻画出了某些N(a1,a2,a;b1,b2;c1,c2,c3,c4;n)的精确公式。最后,我们对研究工作进行了总结并展望后续的研究工作。
[Abstract]:The representation of positive integers as the sum of multiple mixed numbers is one of the hot topics in the field of combinatorial mathematics and number theory, which has an important relationship with many branches of mathematics. Attracted the interest of many mathematics researchers, including Gao Si. In this paper, we study the representation of positive integers as the sum of mixed numbers of six variables and eight variables. The results show that N and RX ~ (2) and N ~ (1) A ~ (2) A ~ (2) A ~ (3) B ~ (1) B ~ (2 +) C ~ (2 +) C ~ (2) C ~ (2) C ~ (3) C ~ (2) C ~ (3) C ~ (4) ~ (n)) are the method numbers for representing a positive integer n as the sum of six unknowns and eight unknowns, respectively. In this paper, for any positive integer n and some special {rrstt}, {a1a ~ 2a ~ (2) B ~ (1) B ~ (1) B ~ (2 +) C ~ (1) C ~ (2 +) C ~ (3) C ~ (3) C ~ (3) C ~ (4), using the theta function and the formula of Eisenstein series, some exact formulas of Nrs _ t _ t _ n _ n ~ (1) ~ a ~ (2) A ~ (3) B ~ (1) B ~ (1) C ~ (1) C ~ (2) C ~ (3) C ~ (3) C ~ (4) ~ (?)) are determined by using the formula of theta's function and the parameter of Eisenstein series. The structure of this paper is as follows: in the first chapter, the research background, research status and main contents are introduced. In the second chapter, we mainly introduce the theta function Eisenstein series and their parameter representations, and prepare for the establishment of new identities including theta function and Eisenstein series in Chapter 3 and Chapter 4. 鍦ㄧ涓夌珷涓,
本文编号:1782574
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/1782574.html