细胞扩增生物反应器控制系统的研究
本文选题:波浪式生物反应器 + 控制系统 ; 参考:《中国人民解放军军事医学科学院》2017年硕士论文
【摘要】:目的:近年来,随着科学技术的发展,动物细胞培养技术被广泛应用于生物医药产品的工业生产中,如蛋白质药物研发、干细胞移植、疫苗生产、人造组织器官等领域。例如造血干细胞移植可长期重建造血和免疫,它适用于治疗造血干、祖细胞或相关基因有缺陷的疾病,如白血病、重度免疫缺损、自身免疫病等,是一种重要的生物治疗或细胞治疗方法。但往往人体本身可提供的造血干细胞不足,这就迫切需要在体外对这些干细胞进行大规模扩增。生物反应器的提出就为造血干细胞的体外扩增提供了一种非常有效的方法。细胞的培养扩增过程是极其复杂的生物化学反应过程,其代谢必须在适宜的周围环境中才能有效进行。国外已经有比较成熟的生物反应器,但国内还没有商品化的动物细胞生物反应器。本文对波浪式生物反应器的控制系统进行研究,旨在完成一套基于波浪式生物反应器的细胞培养条件的控制系统,使其能更好的应用在细胞的扩增培养上,进而推动我国生物反应器行业向前发展。方法:通过对当前生物反应器培养条件的控制方法和控制系统进行分析和讨论,提出适合波浪式生物反应器培养系统的控制方法。控制系统的设计主要可以分为三部分:培养条件控制方法的设计、控制系统软/硬件部分设计、仿真及实际实验验证部分。关于控制方法的设计,根据温度控制要求及温度控制大滞后的特点,设计出Fuzzy-PID控制算法;根据PH控制要求及PH过程强烈非线性的特性,对分段式变增益PID进行改进,设计出四区段变增益PID控制算法;根据溶解氧浓度非定值控制的特点,设计出TP-PID的控制算法。关于控制系统软/硬件部分的设计,采用单片机为主控芯片,结合MPLAB、MATLAB等实现上、下位机的连接与配合。实验部分,在仿真实验的基础上进一步通过实际实验验证控制算法的效果以及控制系统的性能。内容:本文研究工作主要包括以下几个方面:(1)生物反应器控制系统分类及参数控制方法调研、控制系统控制方案设计。通过大量查阅文献并与相关行业人士接触,调研生物反应器细胞培养的最新进展情况。分析各类控制方法和控制系统的优缺点,从而为文章控制系统的选择和控制方法的提出提供研发的现实意义与应用前景。设计系统整体控制方案,通过比较硬件元器件的性能以及满足应用的情况,选出最佳的系统方案。(2)控制系统硬件设计与实现。系统硬件设计主要包括下位机执行部件的选择、上位机主控部件的选择以及上、下位机之间的集成。下位机硬件部分由主控芯片、检测器件、执行器件、传输线等几部分组成。主控芯片选择dspic30f6014a单片机为控制系统下位机的核心,该芯片将核心处理层及整个外围电路层如输入/输出端口、内存、定时器、计数器等全部都集成在一块芯片上,实现了实验数据的一整套的接收、计算、存储、发送功能;检测器件根据需要控制的T、PH、DO三个培养条件分别选择Pt100、在线PH仪、在线溶解氧仪;执行器件根据控制原理选择电热毯、蠕动泵、电磁阀等。上位机主控部件根据需要选择集显示、控制、存储等功能于一体的DGUS屏,实现对控制系统的整体监控。上、下位机集成主要由它们之间的通讯线连接及统一的通讯协议实现。(3)控制系统控制算法设计与实现。本文主要设计完成了三个控制算法,即针对温度控制的Fuzzy-PID控制算法、针对PH控制的四区段变增益PID控制算法和针对溶解氧浓度控制的TP-PID控制算法。其中,Fuzzy-PID控制算法并非采用传统的并联使用的模式,而是将两种方法整合到一起,以检测信号作为模糊控制的输入,以模糊控制的输出作为PID控制的输入,最后以PID控制的输出作为系统控制信号的输出;四区段变增益PID控制是在分段式变增益PID的基础上根据生物反应器的实际情况进行改进得到的,充分考虑了PH控制的强烈的非线性特性;溶解氧浓度控制算法的设计考虑只需将其控制在某一范围内即可,主要是参考传统控制的模式。(4)人机交互界面设计及触控配置完成。上位机人机交互界面选用DGUS屏,型号为DWT80600T080_06WT,使用Microsoft Visio Premium 2010进行图片制作,需要显示的图片主要包括系统初始化部分、主界面部分、数据输入界面部分等。触控配置使用DGUS配置工具V49,将制作好的图片导入配置工具,按照显示屏操作要求在相应区域位置添加文本显示、按键返回、RTC显示等配置操作,并设置好相应配置的变量地址、文本长度、按键值、案件效果等。将配置好触控功能的显示图片导入到DGUS屏里就完成了人机交互界面的设计。(5)仿真实验加实际实验验证算法可靠性及控制系统性能。为验证控制算法的可靠性,首先使用MATLAB软件中的Simulink软件包设计Fuzzy-PID的温度控制仿真实验和分段式变增益PID的PH控制仿真实验,两个仿真实验均以控制时间和控制精度作为控制算法性能可靠的判断依据。仿真实验验证算法可靠性之后设计实际实验进行验证。使用MPLAB软件按照算法设计编写三种控制算法的程序并将其导入单片机进行实际实验,验证标准依然是控制的时间和稳定后的控制精度。结果:本文根据细胞培养的要求,完成了波浪式生物反应器控制系统中T、PH、DO三个培养条件控制算法的设计,完成了控制系统硬件选择,完成了控制系统电路设计,完成了上、下位机通讯设计,完成了人机交互界面的选择和设计,完成了单片机对应程序的编写,最后在仿真实验基础上设计实际实验完成了算法可靠性的验证工作。发表了两篇论文。结论:本文介绍了各类生物反应器控制系统及控制方法,具体分析了各控制系统的优缺点,提出采用单片机作为主控芯片对波浪式生物反应器控制系统进行研究,并根据要调节的培养条件的特性设计出不同的控制方法。在实际实验进行控制时,温度控制精度可达到±0.1℃,PH控制精度可达到±0.05,溶解氧浓度精度可达到±6%。表明本文所研制的控制系统能够稳定可靠的运行且控制效果良好,说明控制系统能很好地维持细胞生长需要的适宜的环境,满足细胞培养过程的控制要求。本文的创新点在于根据不同被控条件设计出相应的控制方法,如针对温度控设计了模糊PID控制、针对PH控制设计了四区段变增益PID控制;使用dsPIC30f6014a型号单片机作为主控芯片,不仅降低了研发成本,还提高了系统灵活性,缩短了开发周期;使用DGUS屏作为人机交互界面,实现了对控制界面的搭配式设计;将系统进行模块化设计,最后集合到一起,降低了故障的影响率。
[Abstract]:Objective: in recent years, with the development of science and technology, animal cell culture technology has been widely used in the industrial production of biological medicine products, such as protein drug development, stem cell transplantation, vaccine production, artificial tissue and organs, such as hematopoietic stem cell transplantation for long period of heavy construction of blood and immunity, it is suitable for the treatment of hematopoietic stem, ancestral fine. Diseases such as leukemia, severe immunodeficiency, and autoimmune diseases, such as leukemia, severe immunodeficiency, and autoimmune diseases, are an important method of biological treatment or cell therapy. However, the human body itself can provide a lack of hematopoietic stem cells. This is an urgent need for large-scale expansion of these stem cells in vitro. The bioreactor is proposed for hematopoiesis. The expansion of stem cells in vitro provides a very effective method. The process of cell culture and amplification is an extremely complex biochemical reaction process, and its metabolism must be effectively carried out in a suitable environment. There have been more mature bioreactors abroad, but there are no commercialized animal cell bioreactors at home. The paper studies the control system of wave bioreactor, which aims to complete a set of control system based on cell culture conditions based on wave bioreactor, so that it can be better applied to cell expansion and culture, and then promote the development of bioreactor industry in China. The control method and control system are analyzed and discussed, and the control method suitable for the wave bioreactor training system is put forward. The design of the control system can be divided into three parts: the design of the training condition control method, the design of the soft / hardware part of the control system, the simulation and the actual experimental verification part. The Fuzzy-PID control algorithm is designed for the requirements of temperature control and the large lag in temperature control. According to the requirements of PH control and the strong nonlinear characteristics of the PH process, the piecewise variable gain PID is improved and the four section variable gain PID control algorithm is designed. The control algorithm of the TP-PID is designed according to the characteristics of the dissolved oxygen concentration control. In the design of the soft / hardware part of the control system, the MCU is used as the main control chip, the connection and coordination of the lower computer are combined with MPLAB, MATLAB and so on. In the experiment part, the effect of the control algorithm and the performance of the control system are verified on the basis of the simulation experiment. The following aspects: (1) the research on the classification of the bioreactor control system and the method of parameter control, the design of control system control scheme. Through a large number of references and contact with the related industry, the latest progress in the cell culture of bioreactor is investigated and the advantages and disadvantages of various control methods and control systems are analyzed, so as to control the system The selection and control methods provide the practical significance and application prospect of the research and development. Design the overall control scheme of the system. By comparing the performance of the hardware components and meeting the application situation, the best system scheme is selected. (2) the hardware design and implementation of the control system. The system hardware design mainly includes the selection of the executive components of the lower machine. The hardware part of the lower computer consists of the main control chip, the detection device, the execution device, the transmission line and so on. The main control chip chooses the dspic30f6014a MCU as the core of the control system lower computer. The chip will be the core processing layer and the whole peripheral circuit layer, such as input / output. The mouth, memory, timer, counter and so on are all integrated on a chip, realizing a complete set of receiving, calculating, storing and sending function of experimental data. The detection device selects Pt100, online PH instrument, on-line dissolved oxygen system according to the three conditions of T, PH, DO, and the actuator chooses electric blanket and peristaltic pump according to the control principle. The main control components of the host computer, according to the needs, select the DGUS screen which integrates display, control, storage and so on. The control system is monitored as a whole. The integration of the lower computer is mainly connected by the communication line between them and the unified communication protocol. (3) the design and implementation of control system control algorithm. The main design and completion of this paper is to complete the design and implementation of the control system. Three control algorithms, namely, the Fuzzy-PID control algorithm for temperature control, the four section variable gain PID control algorithm for the PH control and the TP-PID control algorithm for the dissolved oxygen concentration control, the Fuzzy-PID control algorithm is not used in the traditional parallel mode, but the two methods are integrated together to detect the signal as a signal. The input of fuzzy control takes the output of fuzzy control as the input of PID control, and the output of PID controlled as the output of the system control signal, and the four section variable gain PID control is improved on the basis of the piecewise variable gain PID based on the actual situation of the bioreactor, taking full account of the strong non line of the PH control. The design of dissolved oxygen concentration control algorithm only needs to control it in a certain range, mainly reference to the traditional control mode. (4) human-computer interaction interface design and touch control configuration. The computer interaction interface of the upper computer is DGUS screen, the model is DWT80600T080_06WT, and the Microsoft Visio Premium 2010 is used for the picture system The pictures that need to be displayed mainly include the system initialization, the main interface part, the data input interface, etc. the touch control configuration uses the DGUS configuration tool V49 to import the good picture into the configuration tool, and add the text display, the key return, the RTC display and so on in accordance with the display operation requirements. The corresponding variable address, text length, key value, case effect, etc.. The design of human-computer interaction interface is completed by introducing the display pictures with good touch function into the DGUS screen. (5) simulation experiments and practical experiments verify the reliability of the algorithm and the performance of the control system. In order to verify the reliability of the control algorithm, the first use of the MATLAB software is to verify the reliability of the algorithm. The Simulink software package designs the temperature control simulation experiment of Fuzzy-PID and the PH control simulation experiment of the piecewise variable gain PID. The two simulation experiments all take the control time and the control precision as the reliable judgment basis of the control algorithm performance. The simulation experiment verifies the reliability of the algorithm and designs the actual experiment to verify. The MPLAB software is used in the simulation experiment. According to the algorithm, three kinds of control algorithms are programmed and introduced into the single chip computer to carry out the actual experiment. It is proved that the standard is still the control time and the control precision after the stability. According to the requirements of cell culture, this paper completed the design of three training conditions control algorithms of T, PH and DO in the wave bioreactor control system. The control system hardware selection, completed the control system circuit design, completed the upper and lower computer communication design, completed the selection and design of the human-computer interaction interface, completed the programming of the single chip computer corresponding program. Finally, on the basis of the simulation experiment, the actual experiment was designed to complete the verification of the reliability of the calculation method. Two papers were published. In this paper, the control system and control methods of various bioreactors are introduced, the advantages and disadvantages of each control system are analyzed, and the control system of wave bioreactor is studied by using single chip microcomputer as the main control chip, and different control methods are designed according to the characteristics of the training conditions to be adjusted. The precision of temperature control can reach to 0.1 C, the precision of PH control can reach 0.05, the precision of dissolved oxygen concentration can reach to + 6%., which indicates that the control system developed in this paper can be stable and reliable, and the control effect is good. It shows that the control system can maintain the suitable environment for cell growth well and meet the control of cell culture process. The innovation point of this paper is to design the corresponding control methods according to the different controlled conditions, such as the design of the fuzzy PID control for temperature control, the design of the four section variable gain PID control for the PH control, and the use of the dsPIC30f6014a single chip as the main control chip, which not only reduces the R & D cost, but also improves the system flexibility and shortens the opening. With the use of DGUS screen as a human-computer interface, the collocation design of the control interface is realized. The system is designed and finally assembled to reduce the impact rate of the fault.
【学位授予单位】:中国人民解放军军事医学科学院
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP273;Q813
【参考文献】
相关期刊论文 前10条
1 李国栋;;PID功能块在分程控制过程中的应用[J];中国仪器仪表;2014年S1期
2 肖宏;郑耀锋;;基于电视导引头稳定平台的自适应模糊PID控制技术研究[J];电子技术与软件工程;2014年13期
3 吴航;苏卫华;刘志国;;机动手术室微环境控制系统PID算法设计[J];军事医学;2014年06期
4 王耀辉;强天伟;;PID控制原理简析[J];洁净与空调技术;2013年03期
5 刘莉宏;;基于智能控制的PID控制方式的研究[J];北京工业职业技术学院学报;2012年02期
6 李健;王冬青;王丽美;;模糊PID控制器设计及MATLAB仿真[J];工业控制计算机;2011年05期
7 王述彦;师宇;冯忠绪;;基于模糊PID控制器的控制方法研究[J];机械科学与技术;2011年01期
8 汪志锋;袁景淇;;SUPCON JX-300X DCS在青霉素发酵生产过程中的应用[J];微计算机信息;2006年22期
9 张嗣良,张恂,唐寅,刘健;发展我国大规模细胞培养生物反应器装备制造业[J];中国生物工程杂志;2005年07期
10 熊伟丽,徐保国,肖应旺;基于PLC的Fuzzy PI发酵温度控制系统[J];计算机工程;2005年09期
相关会议论文 前1条
1 向学军;;变增益智能PID控制器[A];1995中国控制与决策学术年会论文集[C];1995年
相关硕士学位论文 前2条
1 白伟;基于分数阶微积分的炉温控制系统设计[D];中国计量学院;2013年
2 何秀权;激流式生物反应器监控系统的研究[D];哈尔滨工业大学;2009年
,本文编号:1817269
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/1817269.html