包含多孔材料插件的突扩通道湍流流场及声场计算研究
本文选题:突扩通道 + 多孔材料 ; 参考:《华东理工大学》2017年硕士论文
【摘要】:突扩通道流动广泛存在于流体机械与过程装备中,其主要特点是在台阶下游存在分离漩涡运动,造成下游的速度分布不均匀以及流体与固体壁面之间的相互作用,产生结构振动和噪音,不利于安全环保。多孔材料结构是通道内整流消声的常用方法,但是在实际应用过程中,参数的选择基本上依赖于设计与操作人员的经验。参数选择不当,有可能不仅增大了管道内的流动阻力,而且台阶下游的涡运动也可能并未消除。为此,本文研究不同多孔材料参数对突扩通道内的流场及声场的影响,为管道内使用多孔材料插件进行整流与消声的应用提供参考。首先对N-S方程进行体积平均和时均处理,得到了描述多孔介质内部的流动控制方程。对比纯流体控制方程,多孔介质内部流动方程由于惯性阻力与粘性阻力的存在,分别增加了 Forchheimer项和Brinkman项。采用k-ε模型计算湍流应力,多孔介质与纯流体交界面为多孔介质边界条件,求解包含自由空间与多孔材料为一体的流场控制方程。通过控制变量法,分别研究了二维和三维突扩通道内嵌入多孔插件后,流场随渗透率、插件位置和厚度的变化规律。结果表明,多孔插件厚度的增大或者渗透率的减小,都会增大通道内的压力损失,并且它们对压力损失的变化起决定性作用。管道内的涡强和速度脉动强度均随着渗透率的增大而减小,在多孔插件内的涡强与材料渗透率相关。对于包含单频谐波的非定常来流,经过多孔插件后的压力信号、轴向速度脉动、湍动能及湍动能耗散率等参数的波动幅值均降低,相位几乎不发生变化。在流场计算基础上,采用ACTRAN软件对管道内进行声学计算。管道两侧定义为管道声模态面,以模拟无限长管道。声场计算结果揭示了多孔材料插件对低频区噪声的抑制作用,并且随着频率的上升,一部分声波的传播方向从轴向偏转至径向。
[Abstract]:Sudden expansion channel flow widely exists in fluid machinery and process equipment, and its main characteristic is the separation vortex movement in the lower step, which results in uneven velocity distribution downstream and the interaction between fluid and solid wall. Produce structural vibration and noise, which is not conducive to safety and environmental protection. Porous material structure is a common method of rectifying and muffling in channels, but in practical application, the selection of parameters depends on the experience of design and operation personnel. Improper selection of parameters may not only increase the flow resistance in the pipeline, but also the vortex motion downstream of the step may not be eliminated. Therefore, the influence of different porous material parameters on the flow field and sound field in the sudden expansion channel is studied in this paper, which provides a reference for the application of rectifying and silencing by using porous material plug-in the pipeline. First, the volume average and time average of the N-S equation are processed, and the flow control equation is obtained to describe the internal flow of porous media. Compared with the pure fluid governing equations, the internal flow equations in porous media increase the Forchheimer term and the Brinkman term due to the existence of inertial resistance and viscous resistance, respectively. The turbulent stress is calculated by using k- 蔚 model. The interface between porous medium and pure fluid is a porous medium boundary condition, and the governing equation of flow field which contains free space and porous material is solved. By means of variable control method, the variation of flow field with permeability, location and thickness of the plug was studied after embedding the porous plug in the two-dimensional and three-dimensional sudden expansion channels, respectively. The results show that the increase of the thickness of porous plugs or the decrease of permeability will increase the pressure loss in the channel, and they play a decisive role in the change of pressure loss. The vortex strength and velocity pulsation intensity in the pipeline decrease with the increase of permeability, and the vortex strength in the porous plug-in is related to the material permeability. For unsteady flow with single frequency harmonics, the amplitude of pressure signal, axial velocity pulsation, turbulent kinetic energy and turbulent kinetic energy dissipation rate are all decreased, and the phase is almost unchanged. On the basis of flow field calculation, acoustic calculation in pipeline is carried out by ACTRAN software. The two sides of the pipeline are defined as the acoustic modal surface of the pipe to simulate the infinite pipeline. The results of acoustic field calculation reveal the suppression of the noise in the low frequency region by the plug-in of porous materials, and with the increase of the frequency, the propagation direction of part of the sound wave shifts from axial to radial direction.
【学位授予单位】:华东理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O357.5
【相似文献】
相关期刊论文 前10条
1 詹海鸿;黄文貌;许征兵;曾建民;甘武奎;陈小安;;浅谈铝工业用多孔材料[J];大众科技;2008年10期
2 李玲玲;;金属多孔材料的制备及应用[J];科技风;2012年11期
3 L.Seamen,杨根宏;多孔材料动态实验方法述评[J];力学进展;1981年01期
4 张俊彦,张平,甘秋兰,肖映雄;多孔材料代表单元的性质[J];工程力学;2004年02期
5 白青龙,张春花,王冀敏;多孔材料的研究进展[J];内蒙古民族大学学报(自然科学版);2004年05期
6 赵东元 ,朱海峰 ,金碧辉;多孔材料[J];中国基础科学;2005年03期
7 赵东元;;多孔材料 中国科学家谈科学[J];科学观察;2006年06期
8 席本强;;多孔材料的特性分析[J];科技信息(科学教研);2007年23期
9 许爱国;张广财;蔚喜军;潘小飞;朱建士;;冲击作用下多孔材料热力学特征的模拟与分析[J];中国工程科学;2009年09期
10 傅长明;;铝冶金和铝回收工业用多孔材料的研究进展[J];大众科技;2010年12期
相关会议论文 前10条
1 冯勃;徐明龙;张治君;;多孔材料多轴加载实验系统[A];中国力学学会学术大会'2009论文摘要集[C];2009年
2 熊文英;刘钧泉;;多孔材料开发及其工程应用概况[A];2005'(贵阳)表面工程技术创新研讨会论文集[C];2005年
3 ;G.多孔材料[A];2008中国材料研讨会暨庆祝中国科协成立50周年会议程序和论文摘要集[C];2008年
4 杨国昱;;基于硼氧簇单元构建的硼酸盐多孔材料的合成、结构及性能[A];第十七届全国分子筛学术大会会议论文集[C];2013年
5 贺跃辉;王W,
本文编号:1873431
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/1873431.html